2025-2026-1
2025/09/12
G2T learning materials
2025/06/07
- 几何群论学习导引 local
- GGTnotes local
- Hyperbolic boundary local
- Bowditch’s research summary
- Description local
BHG
SurveyDynamic
PS Measure
MISC
1st week: HS and HG
blabla
2nd week: BHG
blabla
3rd week: BG
blablaaa
spaces
§ concerning groups
Moore space M(G, n)
- definition M(G, n):=the CW complex with $H_i(-)=\left.\begin{cases} 0&,i\neq n\\ G&,i=n \end{cases}\right.$, we may also assume π1(−) = 0 if n > 0.
- basic results
- applications
EM space K(G, n)
- definition K(G, n):=the CW complex with $\pi_i(-)=\left.\begin{cases} 0&,i\neq n\\ G&,i=n \end{cases}\right.$.
- basic results
- unique up to (weak) homotopy equivalence;
- product: K(G, n) × K(H, n) ≃ K(G × H, n)
- representation results: Let G be an Ab-grp, X a CW complex, then ⟨X, K(G, n)⟩ ↔︎ Hn(X; G), [f] ↦ f*α where α ∈ Hn(K; G)) = Hom(Hn(K), G) is given by the inverse of Hurewitz isomorphism G → Hn(K).
- cohomology: $H^*(K(\mathbb{Z},n);\mathbb{Q})=\left.\begin{cases} \mathbb{Q}[x_n]&,n\text{ is even}\\ \mathbb{Q}[x_n]/(x_n^2)&,n\text{ is odd} \end{cases}\right.$, using SSS with loopspace fibration, see page 11 of AT-all.
- applications
- motivations of (complex) universal bundles: K(ℤ, 1) = S1, K(ℤ/2, 1) = ℝℙ∞, K(ℤ, 2) = ℂℙ∞.
- (co)homology of groups: Hn(G) = Hn(K(G, n))
classifying space BG
- definition
- BG is the CW complex such that there is a principle G-bundle EG → BG, with EG weakly contractible
- construction (Milnor): for a topo-grp G, there is a accenting chain via topological join: G ⊂ G⋆2 ⊂ ⋯ ⊂ G⋆n⋯ Let EG = ∪G⋆n, BG = EG/G.
- basic results
- uniqueness up to homotopy equivalence
- bijection: $[B,BG]\leftrightarrow Bun_{G}(B)=\left.\begin{cases}\text{principal } G-\\\text{bundles over B}\end{cases}\right\} /\cong$
- applications
Postnikov Towers
§ (direct) constructions
connected sum ⋅#⋅
topological join ⋅ ⋆ ⋅
definition M ⋆ N = M × [0, 1] × N/∼, where (x, 0, y1) ∼ (x, 0, y2), (x1, 1, y) ∼ (x2, 1, y)
basic results
- if M is m-connented, N is n-connected, then M ⋆ N is (m + n + 2)-connected.
- S0 ⋆ S0 = S1, Sm ⋆ Sn = Sm + n + 1.
- M⋆n is always (n − 2)-connected.
applications
- Milnor’s construction of classifying space: EG = ∪G⋆n, BG = EG/G
suspension ΣX
wedge sum ⋅ ∨ ⋅
smash product ⋅ ∧ ⋅
path space PX
loop space ΩX
Thom space TE
Configuration space ConfnX
Čech nerve
§ concerning mappings
mapping cylinder
mapping cone Cf
mapping torus
lens space S−/ℤ•
Hopf torus
tools
- fiber bundle
- Gysin sequence
- Leray-Hirsch
- Thom class
- Steenrod square
2024-2025-2
2025/05/01
This md. file is devoted to gather (most of) the materials for the courses I took in this semester, both for preparation and review.
DT-syl
Lecture notes
solutions
AT-syl
solutions
TG-syl
CG-syl
other books
Useful links
2025/03/10
Homepages
- Paul Minter (GMT, minimal submfds)
- M. Bridson (G2T)
- M. Hagen (G2T)
- Abdul Zalloum (G2T)
- Alex Sisto (G2T)
- Anders Karlsson (G2T)
- Nadler
- Zaslow
- Farb
- Hatcher
- May
- Hacon
- W. Ziller (DG)
- O. Zeitouni (Probability, large deviation)
- D. Izquierdo (AG)
- Jingze Zhu
- Shengwen Gan
- P. Smillie
- Zhifei Zhu
- Shengli Tan (AG)
- G. Chenevier
- M. Taylor (Analysis)
- O. Benoist
- Yihang Zhu
- J. Demailly
- Ben Zhou
- Guofang Wei
- H. Esnault
- A. de Jong (SP)
- M. de Cataldo
- J. Starr
- Chinlung Wang
- S. Garoufalidis
- Lin Chen
- Yifan Jing
- P. Morandi
- D. Auroux
- S. Weinberger
- A. Zinger *
- Bin Guo (DG)
- Shenxing Zhang
- Yi Ouyang
- Yongqi Liang
- https://archaeus13.github.io/
- ShiQuan
- ZhiyaoXiong
- DexterChua
- ShenWujie
- E. Villalgordo
- rqy
- LyuJunzhe
- LiuXiaolong
- LiuZhiyu
- ZhangXucheng
- DaiWenhan
- EvanChen
- LiuBowen
- LiYunsheng https://minterscompactness.wordpress.com
Webpages
QE
2025/03/01
Resources
some repositories: link
P&S(prob le m s)
- distributions
- Maryland, Utah, New Mexico(s+)
- Florida(p+b), Texas(p+b), Connecticut(p+b), Purdue(p, 51900), GaTech(p-)
- prob smo
- exercises-e answer exams-e answer dmath answer itet answer
- Durrett answer by mo
- GTM274 answer by mo
- maryland; utah; florida; conn; texas
G&T(pro ble m s )
UCLA, Harvard, CUNY, Northwestern
partial solution to UCLA , the written qual book
⋄ Riemannian geometry (Page) ⋄ Algebraic topology ⋄ Misclinear algebra
2024/12/08
The following file comes from 4 tutorial sessions I gave during the 2023-2024 academic year.
理科高等代数串讲2024-2025-1
2024/12/03
This md. file is devoted to gather (most of) the materials for the courses I took in this semester.
RG
lecture notes
books
QM
lecture slides
- Lecture 1-2
- Lecture 3-4
- Lecture 5-6
- Lecture 7-8
- Lecture 9-10
- Lecture 10-11
- Lecture 11-12
- Lecture 13-14
- Lecture 15-16
- Lecture 17-18
- Lecture 19-20
- Lecture 21-22
- Lecture 23-24
- Lecture 25-26
- Lecture 27-28
- Lecture 29-30
- Lecture 31-32
- Lecture 33-34
- Lecture 35-36
- Lecture 37-38
- Lecture 39-40
- Lecture 41-42
- Lecture 43-44
- Lecture 45-46
- Lecture 47-48
- Lecture 49-50
- Lecture 51-52
- Lecture 53-54
- Lecture 55-56
- Lecture 57-58
- Lecture 51-58
homeworks
my answers
AG
books
materials
TT
final project
SG
lecture notes
- lecture 1 Introduction
- lecture 2 Symplectic linear algebra
- lecture 3 Symplectic manifolds
- lecture 4 Moser’s trick
- lecture 5 Morse homology and Floer homology
- lecture 6 Ainfinity algebra and Fukaya category
- lecture 7 Chekanov algebra
- lecture 8 Chekanov algebra part II 2
- lecture 9 Augmentation and linearized contact homology
- lecture 10 Constructible sheaves
- lecture 11 Augmentation-sheaf correspondence
- lecture 12 Lagrangian filling
- lecture 13 Lagrangian filling II
- lecture 14 Additional topics
books
Hello World
2024/11/17
Welcome to Hexo! This is my very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.
Quick Start
Create a new post
1 | |
More info: Writing
Run server
1 | |
More info: Server
Generate static files
1 | |
More info: Generating
Deploy to remote sites
1 | |
More info: Deployment
1
9 articles in total