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1. Algebraic topology 2: HW1

Problem 1. Check that the derived couple of an exact couple is still an
exact couple.

Solution. Consider the following exact couple, where d = j ◦ k : E → E

A A

E

i

jk

The derived couple is defined by setting

• E ′ = ker d/im d

• A′ = im i ⊂ A

• i′ = i|A′

• j′ : i(a) 7→ [j(a)]

• k′ : [e] 7→ k(e)

• d = j′ ◦ k′

A′ A′

E ′

i′

j′k′

(1) First, j′ and k′ are well-defined.

• if i(a) = i(b), then (a− b) ∈ ker i = im k, so j(a− b) ∈ im d, i.e.
[j(a)] = [j(b)];

• if [e] = [f ], then (e− f) ∈ im j ◦ k, since k ◦ j = 0, k(e− f) = 0,
i.e. k(e) = k(f).

(2) Second, exactness at (left) A′.
Obviously, im k′ = k(ker d). So a ∈ ker i′ ⇐⇒ a ∈ ker i ∩ im i ⇐⇒
a ∈ im k ∩ ker j ⇐⇒ a = k(b) with j ◦ k(b) = 0 ⇐⇒ a ∈ im k′.

(3) Third, exactness at (right) A′.
a = i(b) ∈ ker j′ ⇐⇒ j(b) ∈ im d ⇐⇒ j(b) = j ◦ k(c) ⇐⇒
b − k(c) ∈ ker j = im i ⇐⇒ b = k(c) + i(f) ⇐⇒ a = i(b) =
i ◦ k(c) + i ◦ i(f) = i ◦ i(f) ∈ im i′.

(4) Forth, exactness at E ′.
[e] ∈ ker k′, e ∈ ker d ⇐⇒ e ∈ ker d ∩ im j ⇐⇒ e = j(a) ⇐⇒
[e] = [j(a)] = j′(i(a)) ∈ im j′.

Thus the derived couple is also exact.
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Problem 2. Let C = ⊕nCn be a filtered chain complex. In other words,
we have a sequence of inclusions:

· · ·FpC ⊂ Fp+1C ⊂ · · ·

where each FpC = ⊕nFpCn is a subcomplex of C and ∪pFpC = C. The
associated graded complex is

GrC =
⊕
p

GrpC =
⊕
n,p

FpCn
Fp−1Cn

.

(1) Let A = ⊕n,pFpCn. Show that A and GrC form an exact couple;

(2) Prove that there is a spectral sequence with E1
p,q = Hp+q(GrpC);

(3) Suppose that the filtration is finite, i.e. FpC = Fp+1C for all but
finitely many p’s. Prove that the spectral sequence above converges
to E∞p,q ∼= GrpHp+q(C) for some filtration on Hp+q(C).

Solution. (1) We have the following short exact sequence

0→ Fp−1Cn ↪→ FpCn ↠ FpCn/Fp−1Cn → 0,

from which we get a long exact sequence of homology groups:

→ Hn(Fp−1C)
i−−→ Hn(FpC)

j−−→ Hn(FpC/Fp−1C)yk
Hn−1(Fp−1C)→

where i, j are induced by inclusion and quotient, and k is induced by
∂ : Cn → Cn−1. Let M = ⊕n,pHn(FpC), E = ⊕n,pHn(FpC/Fp−1C),

M M

E

i

jk

The exactness of the couple comes from the long exact sequence
above.

(2) From the exact couple in (1), we get a spectral sequence by taking
derived couple. Write n = p+ q, the first page consists of

E1
p,q = Hn(FpC/Fp−1C) = Hp+q(GrpC).
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(3) In (1), Mn,p = Hn(FpC). If the filtration is finite, then Mn,−∞ =
Hn(∅) = 0,Mn,∞ = Hn(C). In the r-th stage, we have

Er
n+1,p+r−1

M r
n,p+r−2 M r

n,p+r−1 Er
n,p

M r
n−1,p−1 M r

n−1,p

kr

ir jr

kr

jr

As r → ∞, M r
n−1,p−1,M

r
n−1,p tend to the images of Mn,−∞, i.e. 0.

Also Er
n+1,p+r−1 = Hn+1(Grp+r−1C) tends to 0. Thus

0 M r
n,p+r−2 M r

n,p+r−1 Er
n,p 0

ir jr kr

tells us Er
n,p = ir−1(Mn,p)/i

r(Mn,p−1). We set ir(Mn,p−1) → F p−1
n ,

ir−1(Mn,p) → F p
n , as r → ∞, where F p−1

n ⊂ F p
n ⊂ Mn,∞ = Hn(C).

Write n = p+ q, and take a filtration

· · ·F p−1
p+q ⊂ F p

p+q ⊂ · · · ⊂ F∞p+q = Hp+q(C),

then E∞p,q = GrpHp+q(C).
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2. Algebraic topology 2: HW2

Problem 1. Let F i−→ X
π−→ B be a fibration. Write down a commutative

diagram similar to the following

Hn(B) Hn(X)

En,0
2 En,0

∞

π∗

∼=

for Hn(F ), Hn(X), E0,n
2 , E0,n

∞ . Label all the maps depending whether
they are injective or surjective or isomorphism or i∗.

Solution. The diagram is

Hn(X) Hn(F )

E0,n
∞ E0,n

2

i∗

∼=

Problem 2.[five-term exact sequence] Let F i−→ X
π−→ B be a fiber bundle

over a path-connected CW complex B with trivial monodromy. Prove
that there is an exact sequence:

0→ H1(B)→ H1(X)→ H1(F )→ H2(B)→ H2(X)

Solution. Consider the following diagram

0 E0,1
∞ E0,1

2 E2,0
2 E2,0

∞

H1(B) H1(X) H1(F ) H2(B) H2(X)

E1,0
2 E1,0

∞ E0,1
2 E2,0

2

∼=∼=

∼=

d2

(1) Exactness atH2(B). Note that E2,0
∞ = E2,0

3 , so the kernel is ker(E2,0
2 ↠

E2,0
3 = E2,0

2 /im d2) = im d2;

(2) Exactness atH1(F ). Note that E0,1
∞ = E0,1

3 , so the image is im(E0,1
∞ →

E0,1
2 ) = E0,1

3 = ker d2;

5



202
5sp

rin
g qui

dd
ite

(3) Exactness at H1(X), H1(B). Note that E2,0
2 = E2,0

∞ = H1(B). Thus
it is exact at H1(B). Take a filtration of H1(X)

H1(X) = F0 ⊃ F1 = H1(B) ⊃ F2 ⊃ · · ·

The kernel at H1(X) is ker(H1(X) ↠ E0,1
∞ = F0/F1) = H1(B).

Thus we have a five-term exact sequence.

Problem 3.[Gysin sequence] Let Sn → X → B be a fibration where
the fiber is a sphere. Suppose that the monodromy is trivial. Prove
that there is an element e ∈ Hn+1(B) such that the cup product with
e gives a group homomorphism which fits into a long exact sequence as
the following:

· · · → Hk(B)→ Hk(X)→ Hk−n(B)→ Hk+1(B)→ · · ·

Solution. Consider the following diagram

Hk−n−1(B) Grk−nH
k(X) Ek−n,n

∞

Hk(B) Hk(X) Hk−n(B) Hk+1(B)

Ek,0
2 Ek,0

∞

dn+1

π∗ dn+1

∼=

Note that Ep,q
n+1 = Hp(B) for q = 0, n and vanishes otherwise. The map

dn+1 : E
p,q
n+1 → Ep+n+1,q−n

n+1 above is defined via the cup product with some
e ∈ Hn+1(B).

(1) Exactness at Hk−n(B). The image is Ek−n,n
∞ = Ek−n,n

n+2 = ker dn+1.

(2) Exactness at Hk(X). Note that Ep,k−p
∞ = GrpH

k(X) is possibly non-
zero only for

• k − p = 0, i.e. GrkHk(X);
• k − p = n, i.e. Grk−nHk(X).

Thus Hk(X) = ⊕GrrHk(X) = Ek−n,n
∞ ⊕ Ek,0

∞ , that is it.

(3) Exactness at Hk(B). The kernel is ker(Ek,0
2 ↠ Ek,0

∞ ) = im dn+1.

Thus we have the required exact sequence.
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Problem 4.[Wang sequence] Let F → X → Sn be a fibration where the
basis is a sphere with n ⩾ 2. Prove that H∗(F ) and H∗(X) fit in a long
exact sequence.

Solution. Consider the following diagram

Hk−1(F ) E0,k
∞ E0,k

2

Hk−n(F ) Hk(X) Hk(F ) Hk−n+1(F )

En,k−n
∞ GrnH

k(X)

dn+1

i∗

∼=

dn

(1) Exactness at Hk(F ). The image is E0,k
∞ = ker dn.

(2) Exactness at Hk(X). Note that Ep,k−p
∞ = GrpH

k(X) is possibly non-
zero only for

• p = 0, i.e. Gr0Hk(X);
• p = n, i.e. GrnHk(X).

Thus Hk(X) = ⊕GrrHk(X) = En,k−n
∞ ⊕ E0,k

∞ , that is it.

(3) Exactness at Hk−n(F ). The kernel is ker(Hk−n(F ) ↠ En,k−n
∞ ) =

im dn.

In conclusion, we have a long exact sequence

· · · → Hk−1(F )→ Hk−n(F )→ Hk(X)→ Hk(F )→ · · ·

Problem 5.[Leray-Hirsch] Let F i−→ X
π−→ B be a fiber bundle over

a path-connection CW complex B. Prove that if i∗ : H∗(X;Q) →
H∗(F ;Q) is surjective, then we have an isomorphism of graded abelian
groups

H∗(B;Q)⊗H∗(F ;Q) ∼= H∗(X;Q).

Solution. First, consider the edge morphism

Hq(E) Hq(F )

E0,q
∞ E0,q

2 = H0(B;Hq(F )) = Hq(F )π1(B)

i∗

7
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so Hq(F )π1(B) = Hq(F ), which means the action of π1(B) on H∗(F ;Q)
is trivial. For simplicity, we drop the coefficient Q, obviously Ep,q

2 =
Hp(B;H1(F )) = Hp(B)⊗Hq(F ). Since i∗ is always surjective, we have

Hn(X) Hn(F )

E0,n
∞ E0,n

2

i∗

∼=

∼=

i.e. dr : E0,n
r → Er,n−r+1

r is always trivial. Note that d2 : Ep,q
2 = Ep,0

2 ⊗
E0,q

2 → Ep+2,q−1
2 is given by d2 : Ep,0 → Ep+2,−1

2 , E0,q
2 → E2,q−1

2 , which
are both trivial, so d2 is always trivial. Follow the same procedure, we
can show that dr is trivial ∀r, thus Ep,q

∞ = Ep,q
2 . As a result, Hn(X) =

⊕rGrrHn(X) = ⊕p+q=nHp(B)⊗Hq(F ).

8
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3. Algebraic topology 2: HW3

Problem 1. Consider the following configuration space of n distinct
points in C:

ConfnC := {(x1, · · · , xn) ∈ Cn | xi 6= xj, ∀i 6= j}.
(1) Constuct a fiber bundle π : Confn+1C→ ConfnC. What is the fiber?
(2) Prove that ConfnC is an Eilenberg-Maclane space, i.e. a K(G, 1).
(3) Prove that the fiber bundle π has trivial monodromy.
(4) Prove that the fiber bundle π has a continuous section, i.e. a con-

tinuous map s : ConfnC→ Confn+1C such that π ◦ s = id.
(5) Prove that the coholomogical Serre spectral sequence of the bundle

π satisfies E2 = E∞.
(6) Prove that Ep,q

∞ is a free abelian group for all p, q.
(7) Prove that the extension problem is trivial and we have isomorphisms

of groups

Hk(ConfnC) ∼=
k⊕
p=0

Ep,k−p
∞ .

Conclude that Hk(ConfnC) is torsion free for all k.
(8) Compute Poincaré polynomial of ConfnC.
Solution. (1) Define π : Confn+1C→ ConfnC,

(x1, · · · , xn, xn+1) 7→ (x1, · · · , xn)
this is a fiber bundle, with fiber π−1(x1, · · · , xn) = C\{x1, · · · , xn}.

(2) From the fibration, we get a long exact sequence of homotopy groups
· · · → πk(C\{n pts})→ πk(Confn+1C)→ πk(ConfnC)→ · · ·

Since C\{n pts} ' ∨nS1, we have πk(Confn+1C) = πk(ConfnC) for
k ⩾ 3, and

0→ π2(Confn+1C)→π2(ConfnC)
↓
Z∗n → π1(Confn+1C)→ π1(ConfnC)→ 0

But Conf1C = C, so πk vanishes for k ⩾ 2 by induction, and only
π1(ConfnC) may be non-trivial.

9
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(3) (the background(from Arnold’s paper) is the action of braid goup on
punctured space, which does not permute these punctured points...)
The elements in H1(C\{n pts}) are represented by the winding num-
bers around each punctured point, and the action of g ∈ π1(ConfnC)
does not permute these n points (in fact, it is realized as a pertur-
bation of these points), so it does not change the winding numbers.

(4) We only need to construct a continuous function f : Cn → C such
that f(x1, · · · , xn) 6= xi, ∀i, then s : (x1, · · · , xn) 7→ (x1, · · · , xn, f(xi))
is a continous section. For example, take f = |x1|+ · · ·+ |xn|+ 1.

(5) From (3), we know Ep,q
2 = Hp(ConfnC;Hq(C\{n pts})) is the tensor

product of Hp(ConfnC) and Hq(C\{n pts}), the problem reduces to
Hq(C\{n pts}). But Hq(C\{n pts}) = 0 for q ⩾ 2, so we only need
to show d2 : H

1(C\{n pts})→ H2(ConfnC) is 0. Recall the five term
exact sequence in HW 2.

→ H1(C\{n pts}) d2−→ H2(ConfnC)
π∗
−→ H2(Confn+1C)

as in (4), we have

id : H2(ConfnC)
π∗
−→ H2(Confn+1C)

s∗−→ H2(ConfnC)

so π∗ must be injective, thus d2 = 0. As a result, all the arrows in
E∗2 are zero, thus E∗3 = E∗2 , similarly, we know E∗∞ = · · · = E∗2 .

(6) Ep,q
2 = Hp(ConfnC)⊗Hq(C\{n pts}) =


(Hp(ConfnC))n , q = 1
Hp(ConfnC) , q = 0,
0 , q ⩾ 2

For n = 1, this is obviously true. And if Ep,q
2 is a free abelian group

for n = k, then for n = k + 1, the free-ness of Hp(ConfkC) means
that there is no extension problem, so

Hp(Confk+1C) = Hp(ConfkC)⊕ (Hp−1(ConfkC))k

is also a free abelian group.

(7) similar to (6), all the terms Ep,q
2 are free, so there is no extension

problem, we have Hk(ConfnC) ∼= ⊕kp=0E
p,k−p
∞ .

(8) Write βnp = rankHp(ConfnC), then we have an inductive relation

βn+1
p = βnp + nβnp−1.

10
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For n = 1, β1
0 = 1, β1

k = 0, k ⩾ 2, so P1(t) = 1. Then we have

P2(t) = 1 + t, P3(t) = 1 + 3t+ 2t2 = (1 + t)(1 + 2t).

If Pk(t) = (1 + t) · · · (1 + (k − 1)t) = ak−1t
k−1 + · · ·+ a0, then

Pk+1(t) =kak−1t
k + (ak−1 + kak−2)t

k−1 + · · ·+ (a1 + ka0)t+ a0

=(1 + kt)(ak−1t
k−1 + · · ·+ a0)

=(1 + t) · · · (1 + kt)

Thus we have Pn(t) = (1 + t) · · · (1 + (n− 1)t) for all n.
Problem 2. Compute the cohomology ring H∗(K(Z, n);Q) for n ⩾ 2.

Solution. Write Bn = K(Z, n), then we have a fibration, ΩBn → X →
Bn, where ΩBn is the loopspace, X is the path space, which is con-
tractible. Recall that πk(ΩBn) = πk+1(Bn), so ΩBn = Bn−1. We

prove by induction that H∗(Bn;Q) =

{
Q[xn] , n is even
Q[xn]/(x

2
n) , n is odd , where

degxn = n.
For n = 1, B1 = S1, thus the statement is true.
Suppose it holds for k < n, then since there is no torsion term, Ep,q

2 =
Hp(Bn;H

q(Bn−1;Q)) = Hp(Bn;Q) ⊗Q Hq(Bn−1;Q). But Hp+q(X) is
trivial, so dn : E0,n−1

n → En,0
n is an isomorphism. We have E0,n−1

n =
Hn−1(Bn−1;Q) ∼= Q with generator xn−1, En,0

n = En,0
2 = Hn(Bn;Q) ∼= Q

with generator xn. So up to a rescaling, we can assume dnxn−1 = xn.
• If n is even, by hypothesis, Hq(Bn−1;Q) is non-zero only for q =

0, n − 1, so is Ep,q
2 . Also Hp(Bn;Q) = 0 for 1 ⩽ p ⩽ n − 1, as

a result, if n ∤ p, then Hp(Bn;Q) = 0, thus Ep,q
2 = 0 for n ∤ p.

As for n | p, Hkn(Bn;Q) ∼= · · · ∼= Hn(Bn;Q) = Q, and the map
dn : Ekn,n−1

n → E(k+1)n,0, xn−1x
k
n 7→ xk+1

n shows that xn ^ xkn = xk+1
n ,

thus H∗(Bn;Q) = Q[xn];

• If n is odd, by hypothesis, Hq(Bn−1;Q) is non-zero for q = k(n− 1),
so consider dn : Ep,k(n−1)

n → E
p+n,(k−1)(n−1)
n . Note that

dn(xkn−1) = dn(xn−1)xk−1n−1 + xn−1dn(xk−1n−1)

= xnx
k−1
n−1 + xn−1xnx

k−2
n−1 + x2n−1dn(xk−2n−1)

= · · · = kxnx
k−1
n−1

so dn : E
0,k(n−1)
n → E

n,(k−1)(n−1)
n is always an isomorphism. Since

Hp+q(X) is trivial, this tells that E∗n+1 = E∗∞ and is all zero except

11
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for E0,0
n+1 = Q. Thus Hp(Bn;Q) = Q for p = 0, n and is trivial

otherwise. As a result, H∗(Bn;Q) = Q[xn]/(x
2
n).

According to the discussions above, the statement holds from induction.

Problem 3. Determine the Serre spectral sequence for cohomology over
Z of a fibration

S2 → CP3 → S4

Moreover, prove that the two graded algebras⊕
i

⊕
p

Ep,i−p
∞

and ⊕
i

H i(CP3)

are isomorphic as graded modules but NOT isomorphic as graded alge-
bras.

Solution. The spectral sequence is

0 1 2 3 4

0

1

2

E2 page

H∗(S4)

H
∗ (
S
2
)

Z Z[y]

Z[x] Z[xy]

0

0 1 2 3 4

0

1

2

E3 page

H∗(S4)

H
∗ (
S
2
)

Z Z[y]

Z[x] Z[xy]

0

where Ep,q
∞ = Ep,q

2 . Thus E = ⊕i,pEp,i−p
∞ = Z4. But the ring structure

of E is Z[x, y]/(x2, y2) 6∼= Z[x]/(x4). This is for the product structure of
Ep,q

2 and the cup product are not compatible, the product on Ep,q
2 (as a

quotient) can not be lifted to H∗(CP3).
Remark. This fibration is called the twistor fibration as in this paper.

12
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topy fiber of a map f : Sn → Sn of degree k for k, n > 1.

Solution. Write Fn for the fiber, recall the Wang sequence in HW2

· · · → Hr(Sn)
i∗−→ Hr(Fn)

dn−→ Hr+1−n(Fn)→ Hr+1(Sn)→ · · ·

Take r > n + 1, we have Hr(Fn) = Hr−(n−1)(Fn), so we only need to
consider 0 ⩽ r ⩽ n. Take 0 < r < n − 1, we have Hr(Fn) = 0, and the
left items are

0→ Z→ H0(Fn)→ 0

0→ Hn−1(Fn)→ H0(Fn)→ Hn(Sn)→ Hn(Fn)→ 0

i.e. H0(Fn) = Z and

0→ Hn−1(Fn)
dn−→ Z→ Hn(Sn) = Z i∗−→ Hn(Fn)→ 0

Recall the long exact sequence of homotopy groups

· · · → πn(S
n) = Z f∗−→ πn(S

n) = Z→ πn−1(Fn)→ 0→ · · ·

Since deg f = k, we have πn−1(Fn) = Z/kZ. So Hurewicz theorem
tells that Hn−1(Fn) = πn−1(Fn) = Z/kZ. Useing Universal coefficient
theorem, Hn−1(Fn) = 0, Hn(Fn) = Ext1Z(Hn−1(Fn),Z) = Z/kZ.

As a result, Hr(Fn) =


Z/kZ , r = n+ s(n− 1)
Z , r = 0
0 , otherwise

. For the cup product

structure, note that for any x ∈ Hn+s(n−1)(Fn),

x2 ∈ H2n+2s(n−1)(Fn) = Hn+1+(2s+1)(n−1)(Fn) = 0.

13
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Thus the ring structure is simply

Z[xn, x2n−1, · · · ]/(x2n, kxn, x22n−1, kx2n−1, · · · ).

14
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4. Algebraic topology 2: HW4

Problem 1.

(1) Let f : S3 → K(Z, 3) be a map that induces an isomorphism on π3.
Let X be a homotopy fiber of f (assuming that it is a CW complex).
Show that X is 3-connected and that πi(X) ∼= πi(S

3) for i > 3.

(2) Show that the fibration above gives a fibration

K(Z, s)→ X → S3.

(3) Consider the Serre spectral sequence of the second fibration above
for cohomology over integers. Compute E2 as a graded algebra in
terms of generators and relations. Show that E2 = E3.

(4) Determine the E3-differentials. Determine E∞.

(5) Compute H i(X;Z) and Hi(X;Z) for all i.

(6) Conclude π4(S3) ∼= Z/2.

(7) Let p be a prime. Prove that the first p-torsion in πi(X) is a Z/p in
π2p. Conclude the same for S3.

(8) Using the Hopf bundle, deduce the same for S2.

(9) Using the stability of homotopy groups of spheres, show that πn+1(S
n) ∼=

Z/2 for n ⩾ 3.

Solution. (1) Consider the long exact sequence of homotopy groups

→ πn+1(k(Z, 3))→ πn(X)→ πn(S
3)→ πn(K(Z, 3))→

for n = 0, 1, we get πn(X) = πn(S
3) = 0, for n = 2, we get

→ π3(S
3)
∼−→ π3(K(Z, 3))→ π2(X)→ 0,

so π2(X) = 0, for n = 3, we get

0→ π3(X)→ π3(S
3)
∼−→ π3(K(Z, 3))→,

so π3(X) = 0. And for n ⩾ 4, we get

0→ πn(X)→ πn(S
3)→ 0,

so πn(X) = πn(S
3).
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(2) Suppose F → X → S3 is a fibration, then we have

→ πn+1(X)→ πn+1(S
3)→ πn(F )→ πn(X)→ πn(S

3)→ .

So for n ⩾ 4 and n ⩽ 1, πn(S3) = πn(X), thus πn(F ) = 0. Also, for
n = 2, we get

→ π3(X) = 0→ π3(S
3)→ π2(F )→ 0,

so π2(F ) = Z, for n = 3, we get

→ π4(X)
∼−→ π4(S

3)→ π3(F )→ 0,

so π3(F ) = 0. In conclusion F is a K(Z, 2) space.

(3) Ep,q
2 = Hp(S3;Hq(F )). Recall that Hp(S3) 6= 0 only for p = 0, 3, and

H∗(K(Z, 2)) = Z[x2], so the E2 and E3 pages are

0 1 2 3

0

1

2

3

4

5

E2 page

H∗(S3)

H
∗ (
F
)

Z Z[y]

Z[x2]

Z[x22y]Z[x22]

Z[x2y]

... ...

0

0 1 2 3

0

1

2

3

4

5

E3 page

H∗(S3)

H
∗ (
F
)

Z Z[y]

Z[x2]

Z[x22y]Z[x22]

Z[x2y]

... ...

d3d3

d3d3

So E2 = E3.

(4) Using Hurewicz theorem for X, H2(X) = H3(x) = 0, so we have
from Wang sequence

H2(X) = 0→ H2(F )
d3−→ H0(F )→ H3(X) = 0,

which means d3x2 = ±y, WLOG, assume d3x2 = y. Moreover,

d3x
k
2 = kxk−12 d3x2 = kxk−12 y

so the E4 = E∞ page is
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0 1 2 3

0

1

2

3

4

5

H∗(S3)

H
∗ (
F
)

Z 0

0

Z/3Z0

Z/2Z

... ...

(5) Ep,q
4 = GrpH

p+q(X), from the diagram above, the only possibly non-
trivial terms are Gr3H2q+3(X) = E3,2q

4 = Z/(q + 1)Z, Gr0H0(X) =
Z, Gr0H2q+2(X) = 0 for q ⩾ 0. Thus

H̃ i(X) =

{
Z/(q + 1)Z , i = 2q + 3, q ⩾ 0
0 , otherwise

.

Using the following exact sequence

0→ Ext1Z(Hq+1(X),Z)→ Hq(X)→ HomZ(H
q(X),Z)→ 0,

H̃i(X) =

{
Z/(q + 1)Z , i = 2q + 2, q ⩾ 0
0 , otherwise

.

(6) Using Hurewicz theorem again, π4(S3) = π4(X) = H4(X) = Z/2Z.

(7) It is easy to see that πi(X) is always a torsion group for i > 3.
For prime p, let Cp be the class of torsion groups, such that any
G ∈ Cp, g ∈ G, we have ord g | (p!)k for some k ⩾ 1 (i.e. no factors of
any prime q > p). The property of Cp is preserved by tensor product
and short exact sequence, so Cp is a Serre class.
Write p′ for the prime next to p. Using generalized Hurewicz theorem,
since Hi(X) ∈ Cp, for i < 2p′, so πi(X) ∈ Cp for i < 2p′. As a result,
for any prime p′, π2p′(X) is the first one which possibly contains some
p′-torsion. Also the map

h : π2p′(X)→ H2p′(X) = Z/p′Z

17
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is a Cp isomorphism, so the cokernel, is both a quotient of Z/p′Z
and a (p!)k-torsion for some k, thus it must be 0, which means h is
surjective. So there must be some p′-torsion element in π2p′(X) (e.g.
h−1(1)), then we know Z/p′Z is a subgroup of π2p′(X).
In conclusion, π2p(X) is the first one to contains Z/pZ as a subgroup.
Then from (1), this is also true for S3.

(8) For S1 → S3 → S2, we have a long exact sequence

→ πn(S
1)→ πn(S

3)→ πn(S
2)→ πn−1(S

1)→ .

For n ⩾ 3, πn(S3) = πn(S
2), so the result in (7) is also true for S2.

(9) According to Freudenthal theorem, the map πi(S
n) → πi+1(S

n+1) is
an isomorphism for i < 2n− 1. For n ⩾ 2, i = n+ 1,

πn+1(S
n) = πn(S

n−1) = · · · = π4(S
3) = Z/2Z.

Problem 2. Compute H1(S1;Z) with local coefficients where the action
of π1(S1) on Z is nontrivial (there is only one such action). Write down
a cellular chain complex and its differentials.

Solution. The cellular structure of R = S̃1 is

Z[t, t−1] tm 7→tm−tm−1

−−−−−−−→ Z[t, t−1]→ 0

so the cellular complex for the local system is

0→ HomZ[t,t−1](Z[t, t−1],Z)→ HomZ[t,t−1](Z[t, t−1],Z)

or tm 7→ (−1)mk gives HomZ[t,t−1](Z[t, t−1],Z) ∼= Z, in which case

0→ Z i−→ Z

where i is given by k 7→ l:

Z[t, t−1] Z[t, t−1]

Z

tm 7→tm−tm−1

l:tm 7→(−1)mk−(−1)m−1k k:tm 7→(−1)mk

that is (k : 1→ k) ∈ Z 7→ (2k : 1→ 2k) ∈ Z, so i = 2·, and H1(S1;Z) =
Z/2Z.

Problem 3. Let π = π1(S
1). Compute H∗(S1;Z[π]) and H∗(S1;Z[π])

from definition. Write down a chain complex and its differentials.

18
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Solution. Since

Z[t, t−1]⊗Z[t,t−1] Z[t, t−1] = HomZ[t,t−1](Z[t, t−1],Z[t, t−1]) = Z[t, t−1]

the chain complexes are

Z[t, t−1] (1−t−1)·−−−−→ Z[t, t−1]→ 0

and
0→ Z[t, t−1] (1−t−1)·−−−−→ Z[t, t−1].

So H0(S
1;Z[π]) = Z[t, t−1]/im ((1 − t−1)·) = Z, H1(S1;Z[π]) = Z, the

others are all 0.

Problem 4.(2-C in [MS]) Existence theorem for Euclidean metrics. Us-
ing a partition of unity, show that any vector bundle over a paracompact
base space can be given a Euclidean metric.

Solution. Let {Uλ} be an countable atalas of B. For each Uλ, write
ϕλ : π−1(Uλ) ∼= Uλ × Rr ∼= Rn × Rr. We then define a Euclidean metric
on π−1(Uλ), by putting the standard inner product on Rr, i.e.

〈(x, v), (x,w)〉 = 〈v, w〉Rr , ∀x ∈ Rn.

and take µλ((x, v)) = 〈(x, v), (x, v)〉. Now take a partition of unity {ρλ}
subordinate to {Uλ}, let µ =

∑
λ ρλµλ, this gives a Euclidean metric on

the vector bundle.

Problem 5.(3-D in [MS]) If a vector bundle ξ possesses a Euclidean
metric, show that ξ is isomorphic to its dual bundle Hom(ξ, ε1).

Solution. Suppose µ is a Euclidean metric on ξ, then the quadratic form
〈v, w〉 = 1

2 (µ(v + w)− µ(v)− µ(w)) is an inner product.
Now define a map ϕ : E(ξ)→ E(Hom(ξ, ε1)),

v ∈ π−1(x) 7→ 〈v, ·〉 : π−1(x)→ R

First, this is a bundle map, since it preserves the base point. Second,
on each fiber, according to linear algebra, the map v → 〈v, ·〉 is a linear
isomorphism. Thus ϕ ia a bundle isomorphism.

Problem 6.(3-E in [MS]) Show that the set of isomorphism classes of
1-dimensional vector bundles over B forms an abelian group with respect
to the tensor product operation. Show that a given R1-bundle ξ possesses
a Euclidean metric if and only if ξ represents an element of order ⩽ 2 in
this group.
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Solution. First, we show the group structure. For any [ξ], [η], the prod-
uct is defined by [ξ ⊗R η].

• it is well-defined, since if ξ ∼= ξ′, η ∼= η′, then on each fiber, as linear
spaces, π−1ξ (x) ∼= π−1ξ′ (x), and π−1η (x) ∼= π−1η′ (x), then π−1ξ⊗ξ′(x)

∼=
π−1ξ′⊗η′(x), so ξ ⊗ η ∼= ξ′ ⊗ η′;

• it is associative according to the associativity of tensor product;

• ξ ⊗ η ∼= η ⊗ ξ, so the product is Abelian;

• ξ ⊗ ε1 ∼= ξ, so [ε1] is the identity element;

• ξ ⊗ ξ∨ ∼= ε1(verified on each fiber with linear algebra).

In conclusion, {[ξ]} has a structure of an Abelian group.
Second, if ξ possesses a Euclidean metric, then Problem 5. tells that
ξ ∼= ξ∨, thus [ξ]2 = [ξ ⊗ ξ] = [ε1], i.e. [ξ] is of order ⩽ 2. Conversely, if
ξ ⊗ ξ ∼= ε1, then write ϕ : ξ ∼= ξ∨. Up to a scaling, we can assume 1 7→ 1
in each fiber, then 〈·, ·〉 : π−1(x)⊗ π−1(x)→ R,

〈v, w〉 = ϕ(v)(w) = vw

is an inner product on π−1(x). Similar to Problem 4., we can patch it
to get a Euclidean metric on ξ.
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5. Algebraic topology 2: HW5

Problem 1.(4-A in [MS]) Show that the Stiefel-Whitney classes of a
Cartesian product are given by

wk(ξ × η) =
k∑
i=0

wi(ξ)× wk−i(η).

Solution. Let p1, p2 be the projection of B(ξ×η) on to B(ξ), B(η). Note
that E(ξ × η) = p∗1E(ξ)⊕ p∗2E(η), so use the product formula,

wk(ξ × η) =
k∑
i=0

p∗1wi(ξ) ⌣ p∗2wk−i(η).

Drop the pull-back for simplicity, we get the required formula.

Problem 2.(4-B in [MS]) Prove the following theorem of Stiefel. If
n+ 1 = 2rm with m odd, then there do not exist 2r vector fields on the
projective space Pn, which are everywhere linearly independent.

Solution. For m = 1, n = 2r − 2 < 2r, so the statement is obvious.
Now suppose m > 1, and there exist 2r such vector fields on Pn. In this
case, we have a decomposition TPn = ε2

r⊕ τ , where τ is the complement
bundle of rank 2r(m− 1)− 1. Thus for k ⩾ 2r(m− 1),

wk(Pn) = wk(τ) = 0.

But this is impossible, since take k = 2r(m− 1), the number(
2rm

2r(m− 1)

)
=

(2r(m− 1) + 1) · · · 2rm
1 · · · 2r

=
2r∏
k=1

2r(m− 1) + k

k

is an odd number, so wk(Pn), as the degree k part of (1+ a)n+1, must be
non-zero. This contradiction tells that there are no such vector fields.

Problem 3.(4-C in [MS]) A manifold M is said to admit a field of
tangent k-planes if its tangent bundle admits a sub-bundle of dimension
k. Show that Pn admits a field of tangent 1-planes if and only if n is odd.
Show that P4 and P6 do not admit fields of tangent 2-planes.

Solution. First consider 1-planes.
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• If n is even, then w(Pn) = (1+a)n+1 = · · ·+an, i.e. wn(Pn) = an 6= 0.
If there exists a 1-plane, then we have a decomposition TPn = ξ⊕ η,
where ξ is of rank 1, η is of rank n − 1. Note that an = wn(Pn) =
w1(ξ)wn−1(η), so w1(ξ) = a 6= 0. Hence

(1 + a)n+1 = w(Pn) = w(ξ)wη = (1 + a)w(η),

i.e. w(η) = (1 + a)n, this is impossible due to rank reason.

• If n is odd, we know there is a non-vanishing vector field on Sn, thus
the induced vector field on Pn is non-vanishing, this gives a 1-plane.

Second consider 2-planes. If there exists a 2-plane, similarly, we write
TPn = ξ ⊕ η, where ξ is of rank 2, η is of rank n− 2, so an = wn(Pn) =
w2(ξ)wn−2(η), as a result, w2(ξ) = a2 6= 0,

(1 + a)n+1 = w(Pn) = w(ξ)w(η) = (1 + ka+ a2)w(η).

Here that k 6= 0, due to rank reason of w(η), so k = 1.

• As for P4,
w(η) = (1 + a+ a2)−1(1 + a)5

= (1 + a+ a3 + a4)(1 + a+ a4),

there exist a4 term, which is impossible.

• As for P6,

w(η) = (1 + a+ a2)−1(1 + a)7

= (1 + a+ a3 + a4 + a6)(1 + a+ · · ·+ a6),

there exists a6 term, which is impossible.

Problem 4.(4-D in [MS]) If the n-dimensional manifold M can be im-
mersed in Rn+1 show that each wi(M) is equal to the i-fold cup product
w1(M)i. If Pn can be immersed in Rn+1 show that n must be of the form
2r − 1 or 2r − 2.

Solution. If i : Mn → Rn+1 is an immersion, then we have a decompo-
sition i∗TRn+1 = TM ⊕ γ, as a result

1 = w(M)w(γ) = w(M)(1 + t).

If t = 0, w(M) = 1, and if t 6= 0, w(M) = 1 + t+ · · · + tn, in both case,
wi(M) = (w1(M))i. Now let M = Pn.
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• if t = 0, we should have
1 = (1 + a)n+1,

this happens if and only if n + 1 = 2r for some r. (in Problem 2.
we have proved 2r(2k + 1) is not possible for k > 0)

• if t 6= 0, we should have
1 = (1 + a)n+1(1 + a),

similarly, this happens if and only if n+ 2 = 2r for some r.
Thus n must be of the form 2r − 1 or 2r − 2.

Problem 5.(4-E in [MS]) Show that the set Nn consisting of all un-
oriented cobordism classes of smooth closed n-manifolds can be made
into an additive goup. This cobordism group Nn is finite by 4.11, and is
clearly a module over Z/2Z. Using the manifolds P2 × P2 and P4, show
that N4 contains at least four distinct elements.

Solution. The group structure
• the addition is [M ] + [N ] = M tN , this is well defined since if
M ∼M ′, N ∼ N ′ or say ∂A =MtM ′, ∂B = NtN ′, then ∂(AtB) =
(M tN) t (M ′ tN ′), i.e. M tN ∼M ′ tN ′.

• the addition is associative and commutative, since ([M ]+[N ])+[L] =
[M tN tL] = [M ] + ([N ] + [L]), [M ] + [N ] = [M tN ] = [N ] + [M ].

• the zero element is [∅].
• the inverse of [M ] is itself, since ∂(M × [0, 1]) =M tM .

Thus Nn is an Abelian group consisting of 2-torsions.
As for N4, we compute the SW numbers, write mi,j,k,l(M) for the SW
number of M for wi

1w
j
2w

k
3w

l
4.

m0,0,0,1 m1,0,1,0 m0,2,0,0 m2,1,0,0 m4,0,0,0

∅ 0 0 0 0 0
P2 × P2 1 0 1 0 0

P4 1 0 0 0 1
(P2 × P2) t P4 0 0 1 0 1

(P2 × P2 is computed with Problem 1., (P2 × P2) t P4 is done by
summing up)
From this table, ∅, S4,P2 × P2,P4 are in different cobordism classes.
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Problem 6.(5-E in [MS]) Let ξ be an Rn-bundle over B.
(1) Show that there exists a vector bundle η over B with ξ ⊕ η trivial if

and only if there exists a bundle map ξ → γn(Rn+k) for large k. If
such a map exists, ξ will be called a bundle of finite type.

(2) Now assume that B is normal. Show that ξ has finite type if and
only if B is covered by finitely many open sets U1, · · · , Ur with ξ|Ui

trivial.
(3) If B is paracompact and has finite covering dimension, show (using

the argument of 5.9) that every ξ over B has finite type.
(4) Using Stiefel-Whitney classes, show that the vector bundle γ1 over

P∞ does not have finite type.
Solution. (1) For “⇐”, since γn(Rn+k) is a sub-bundle of εn+k

Gn(Rn+k)
, ξ is

also a sub-bundle of a trivial bundle. For “⇒”, in order to construct
a bundle map f : ξ → γn(Rn+k), it suffices to construct a linear
and injective map f̂ : E(ξ) → Rn+k, since the required map can be
defined by

f(e) = (f̂(e), f̂(Fe)).

This is already done by ξ ↪→ εn+kB .
(2) “⇐” follows from Lemma 5.3. in [MS], since the proof uses compact-

ness only for a finite r (the normal property is used here). For “⇒”,
consider the bundle map

E(ξ) E(γn(Rn+k))

B Gn(Rn+k)

So we can pull back a trivialization covering of Gn(Rn+k) to get a
trivialization covering of B. The later one is compact, so the covering
can be taken to be finite.

(3) Being of finite covering dimension means that, there exists some
d < ∞, such that for any open covering, there is a refinement, in
which each point is contained in no more that d open sets.
Now we mimick the proof of Lemma 5.9. in [MS]. Choose a locally
finite open covering {Vα} such that σ|Vα is trivial, and (up to a re-
finement) suppose each point is covered for no more than d times.
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Choose an open covering {Wα} with W α ⊂ Vα. Let λα : B → R be
a continuous function which equals 1 on W α and equals 0 outside of
Vα. Now for S ⊂ {α}, let U(S) ⊂ B be the set of all b with

min
α∈S

λα(b) > max
α∈S

λα(b),

and let Uk be the union of U(S) with #S = k. So Uk is open and
B = ∪∞k=1Uk. Note that from this definition, b ∈ Uk if and only if
λα(b) > 0 for exactly k’s α, which means b ∈ Vα for k’s set Vα. Thus
by assumption B = ∪dk=1Uk.
Now use (2), B must be of finite type.

(4) If γ1 is of finite type, then there exists a vector bundle η over P∞
with ξ ⊕ η trivial. In this case

1 = w(ξ ⊕ η) = (1 + a)w(η)

so w(η) = 1 + a+ · · ·, i.e. η is not of finite rank, that is impossible.
Problem 7. Consider vector bundles over a paracompact base B.
(1) Let V ectn(B) denote the set of isomorphism classes of n-dimensional

real vector bundles over B. Prove that V ect1(B) forms a group under
tensor product.

(2) Suppose ξ is a 1-dimensional real vector bundle over B. Prove that
ξ is trivial if and only if w1(ξ) is trivial.

(3) Prove that V ect1(B) ∼= H1(B;Z/2Z) as groups.
(4) Does (2) hold for n > 1 dimensional real vector bundles? Justify

your answer.
Solution. (1) The group structure

• the product is ξ · η = ξ ⊗ η, it is associative and commutative,
by the associativity and commutativity (up to an isomorphism)
of tensor product on each fiber.

• the zero element is ε1B, since ξ ⊗ ε1B = ξ for any ξ.
• the inverse of ξ is ξ∨ = Hom(ξ, ε1B), by the pairing.

(2) “⇒” is obvious. For “⇐”, see (3).
(3) The map ϕ : V ect1(B) → H1(B;Z/2Z), ξ 7→ w1(ξ) is a group ho-

momorphism since w1(ξ ⊗ η) = w1(ξ) + w1(η) (7-C in [MS], proven
using universal bundle). Consider the universal bundle,
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E(ξ) f ∗ξE(γ
1) E(γ1)

B P∞

∼

fξ

we have
[B,P∞] ψ−→ V ect1(B)

φ−→ H1(B;Z/2Z)
where ψ([f ]) = f ∗(γ1), ϕ(ξ) = w1(ξ), and the composition is

[f ] 7→ f ∗(γ1) 7→ w1(f
∗(γ1)) = f ∗w1(γ

1).

The map ψ is bijective by the 2 properties of universal bundle. The
composition is bijective, for w1(γ

1) is a generator of H1(P∞,Z/2Z),
and the isomorphism [B,K(G, 1)] ∼= H1(B;G) for G = Z/2Z,since
P∞ = K(Z/2Z, 1).
Thus ψ : V ect1(B) ∼= H1(B;Z/2Z), the injectivity implies (2).

(4) No, consider P5 and its tangent bundle, since w1(P5) = 0, w3(P5) =
a3 6= 0, it must be non-trivial.
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6. Algebraic topology 2: HW6

Problem 1.(6-B in [MS]) Show that the restriction homomorphism

i∗ : Hp(Gn(R∞))→ Hp(Gn(Rn+k))

is an isomorphism for p < k, any coefficient group may be used.

Solution. For r ⩽ k, the number of r-cells in Gn(Rn+k) is exactly the
number of partitions of r into at most n integers, it remains the same for
Gn(R∞). Thus i : Gn(Rn+k) → Gn(R∞) restricts to an homeomorphism
on the k-skeleton, according to cellular cohomology, i∗ : Hp(Gn(R∞))→
Hp(Gn(Rn+k)) must be an isomorphism for p < k.

Problem 2.(6-C in [MS]) Show that the correspondence f : X → R1⊕X
defines an embedding of the Grassmann manifold Gn(Rm) into Gn+1(R1⊕
Rm) = Gn+1(Rm+1), and that f is covered by a bundle map

ε1 ⊕ γn(Rm)→ γn+1(Rm+1).

Show that f carries the r-cell of Gn(Rm) which corresponds to a given
partition i1 · · · is of r onto the r-cell of Gn+1(Rm+1) which corresponds to
the same partition i1 · · · is.

Solution. Consider the Stiefel manifolds

(Rm)n (Rm+1)n+1

Vn(Rm) Vn+1(Rm+1)

Gn(Rm) Gn+1(Rm+1)

f̃

f

f

f naturally gives an embedding f̃ : (Rm)n → (Rm+1)n+1, and it restricts
to an embedding f : Vn(Rm) ⊂ (Rm)n → Vn+1(Rm+1) ⊂ (Rm+1)n+1. f is
the induced map of f via quotient, so is also an embedding.
Define F : ε1 ⊕ γn(Rm)→ γn+1(Rm+1) by

(L, (a, u)) 7→ (R1 ⊕ L, (a, u)), a ∈ R, u ∈ L ⊂ Rm

then F gives an isomorphism on each fiber, and from definition, π ◦F =
f ◦ p, so the following diagram commute, thus F is a bundle map.
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ε1 ⊕ γn(Rm) γn+1(Rm+1)

Gn(Rm) Gn+1(Rm+1)

p

F

π

f

As for the r-cells, suppose an r-cell of Gn(Rm) corresponding to a par-
tition i1 · · · is is given by Schubert symbol σ = (σ1 · · · σn), with r =
σ1 − 1 + · · ·+ σn − n, and σ1 − 1, · · · σn − n the same as i1, · · · , is up to
a cancellation of zeros. Then f maps the cell to a cell given by Schubert
symbol σ′ = (σ′1 · · · σ′n+1), where

σ′1 = 1, σ′2 = σ1 + 1, · · · , σ′n+1 = σn + 1.

Note σ′1 − 1 = 0, σ′2 − 2 = σ1 − 1, · · · , σ′n+1 − (n + 1) = σn − n, so it
corresponds to the same partition i1 · · · is, and is an r-cell of Gn+1(Rm+1).
Problem 3.(6-D in [MS]) Show that the number of distinct Stiefel-
Whitney numbers for an n-dimensional manifold is equal to p(n).

Solution. The required number is the number of (r1 · · · rn) with 1 · r1 +
· · · + n · rn = n and ri ⩾ 0. Let s1 = rn, s2 = rn + rn−1, · · · , sn =
rn + · · ·+ r1, then 0 ⩽ s1 ⩽ · · · ⩽ sn and s1 + · · ·+ sn = n, which means
(s1 · · · sn) is a partition of n. Conversely, given a partition (s1 · · · sn), let
rn = s1, rn−1 = s2−s1, · · · , r1 = sn−sn−1, then 1·r1+· · ·+n·rn = n. Thus
the required number equals the number of partitions of n, i.e. p(n).

Problem 4.(7-A in [MS]) Indentify explicitly the cocycle in Cr(Gn) ∼=
Hr(Gn) which corresponds to the Stiefel-Whitney class wr(γn).

Solution. According to Problem 1., we have Cr(Gn) ∼= Hr(Gn) ∼=
Hr(Gn(Rn+r+1)). And using Problem 2., we can map the r-cell of
G1(Rr+2) = Pr+1 to a r-cell of Gn(Rn+r+1). Since the partition of r for
wr(Pr+1) should be (1 · · · 1), (for (0 · · · 1) with 0 + · · · + 1 · r = r gives
partition (1, · · · , 1) via Problem 3.), that is the same as the partition
of r corresponding to wr(γn). As a result,

f : Cr(Gn) ∼= Hr(Gn) ∼= Hr(Gn(Rn+r+1))
(Rn−1⊕)∗−−−−−→ Hr(Pr+1)

satisfies f ∗wr(Pr+1) = wr(Gn), In other word, the cocycle in Cr(Gn) is
the inverse image of the r-cell of Pr+1.
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Problem 5. Consider a vector bundle ξ over a paracompact base B.
We have Rn → E

π−→ B. Let F (E) denote the space of frames in E:

F (E) := {(b, L1, · · · , Ln) |Li’s are linearly independent lines in Fb}.

Let f : F (E)→ B denote the natural projection. Prove that

(1) f ∗ξ is isomorphic to a Whitney sum of 1-dimensional sub-bundles.

(2) f induce an injective map on cohomology with Z/2Z coefficients.

Solution. (1) The map F : F ∗E(ξ)→ E(ξ) is given by

f ∗E(ξ) E(ξ)

F (E) B

F

p π

f

(b, L1 · · · , Ln, v) 7→ (b, v), where v ∈ Fb. Now write (uniquely) v =
v1 + · · · vn, vi ∈ Li, then pi : (b, L1, · · · , Ln, vi) 7→ (b, L1, · · · , Ln)
gives a 1-dimensional sub-bundle ηi of f ∗E(ξ) for each i. Also we
have f ∗E(ξ) = η1 ⊕ · · · ⊕ ηn.

(2) We prove this result by induction for

F (E)k := {(b, L1, · · · , Lk) |Li’s are linearly independent lines}

where 1 ⩽ k ⩽ n. For k = 1, Pn → F (E)1 → B is a fiber bundle,
and the canonical line bundle L over F (E)1, given by (b, L, v) 7→
(b, L), v ∈ L, restricts naturally to the canonical line bundle L′ over
P1. Note that L′ ∈ V ect1(Pn) ∼= H1(Pn;Z/2Z) is a generator of
H∗(Pn;Z/2Z), so H∗(F (E)1;Z/2Z) ↠ H∗(Pn;Z/2Z).
Thus we use Leray-Hirsch theorem, which tells H∗(F (E)1;Z/2Z) is a
free module over H∗(B;Z/2Z), or equivalently, i∗1 : H∗(B;Z/2Z) →
H∗(F (E)1;Z/2Z) is injective.
If the result holds for 1 ⩽ k ⩽ n − 1, then the map similar to
Problem 2. gives a fibration Pn → F (E)k+1 → F (E)k, so apply the
procedure above, we get an injective map i∗k+1 : H

∗(F (E)k;Z/2Z)→
H∗(F (E)k+1;Z/2Z).
Finally i∗k+1◦· · · i∗1 : H∗(B;Z/2Z)→ H∗(F (E)k+1;Z/2Z) is injective.
So by induction, the result holds for 1 ⩽ k ⩽ n.
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Problem 6. Suppose ξ and η are vector bundles over B of dimension
m,n. Express w1(ξ ⊗ η) and w2(ξ ⊗ η) in terms of the Stiefel-Whitney
classes of ξ, η, and prove your claims.
Solution. w1(ξ ⊗ η) = nw1(ξ) + mw1(η), w2(ξ ⊗ η) = n(n−1)

2 w1(ξ)
2 +

m(m−1)
2 w1(η)

2 + nw2(ξ) +mw2(η) + (mn− 1)w1(ξ)w1(η).
The general result is 7-C in [MS], which states

w(ξm ⊗ ηn) = pm,n(w1(ξ), · · · , wm(ξ), w1(η), · · · , wn(η)),
where pm,n(σm, · · · , σm, σ′1, · · · , σ′n) =

∏
i

∏
j(1 + ti + t′j).

(For w2, consider the degree 2 terms in
∏

i

∏
j(1 + ti + t′j), which is a

sum of 2mn(mn − 1) monomials, and can be written as n(n−1)
2 (Σti)

2 +
m(m−1)

2 (Σt′j)
2 + nΣi<ktitk +mΣj<lt

′
jt
′
l + (mn− 1)(Σti)(Σtj), by counting

occurence)
Now we prove the general result.
First consider the line bundle case, i.e. m = n = 1. Let γ be the
canonical line bundle of P∞, p1, p2 projections from P∞×P∞ → P∞, and
µ : P∞ × P∞ → P∞ a map

p∗1γ ⊗ p∗2γ γ

P∞ × P∞ P∞µ

with the diagram commuting. Then we can write µ∗w1(γ) = w1(p
∗
1γ ⊗

p∗2γ) = ap∗1w1(γ) + bp∗2w1(γ) according to Künneth formula. Note that
for a permutation σ 6= id ∈ S2, µ ◦ σ also satisfies the properties of µ, so
by the homotopy property of universal bundle, µ ◦ σ ' µ. As a result,

ap∗2w1(γ) + bp∗1w1(γ) = (µ ◦ σ)∗w1(γ)

= µ∗w1(γ) = ap∗1w1(γ) + bp∗2w1(γ),

which means a = b ∈ Z/2Z. Now let fi : B → P∞ with

ξ γ

B P∞f1

η γ

B P∞f2

then
(f1, f2)

∗µ∗γ = (f1, f2)
∗(p∗1γ ⊗ p∗2γ)

∼= (p1 ◦ (f1, f2))∗γ ⊗ (p2 ◦ (f1, f2))∗γ
= f ∗1γ ⊗ f ∗2γ = ξ ⊗ η
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Thus w1(L1⊗L2) = (f1, f2)
∗µ∗w1(γ). Because in general w1(L1⊗L2) 6= 0,

so a, b 6= 0 above, i.e. a = b = 1. In return,

w1(L1 ⊗ L2) = (f1, f2)
∗µ∗w1(γ)

= (f1, f2)
∗(p∗1w1(γ) + p∗2w1(γ))

= (p1 ◦ (f1, f2))∗w1(γ) + (p2 ◦ (f1, f2))∗w1(γ)

= f ∗1w1(γ) + f ∗2w1(γ) = w1(ξ) + w1(η).

For general cases, using splitting principle, there is a paracompact space
Y and a map f : Y → B, suth that

• f ∗ξ ∼= ξ′1 ⊕ · · · ⊕ ξ′m;

• f ∗ : H∗(B;Z/2Z)→ H∗(Y ;Z/2Z) is injective.

Again, there is a paracompact space X and a map g : X → Y such that

• g∗f ∗η = η1 ⊕ · · · ⊕ ηn;

• g∗ : H∗(Y ;Z/2Z)→ H∗(X;Z/2Z) is injective.

Let ξi = g∗ξ′i, then g∗f ∗ξ = ξ1 ⊕ · · · ⊕ ξm, and

g∗f ∗(ξ ⊗ η) ∼= (⊕iξ)⊗ (⊕jηj),

as a result
w(g∗f ∗(ξ ⊗ η)) = w((⊕iξi)⊗ (⊕jηj))

=
∏
i

∏
j

w(ξi ⊗ ηj)

=
∏
i

∏
j

(1 + w1(ξi) + w1(ηj)).

Write the last term as q(ti, t′j) = pm,n(σi, σ
′
j), ti = w1(ξi), t

′
j = w1(ηj),

since it remains the same after permutations of ti or of t′j. By construction
of Stiefel-Whitney class, σi = g∗f ∗wi(ξ), σ

′
j = g∗f ∗wj(η), so

g∗f ∗w(ξ ⊗ η) = pm,n(σi, σ
′
j)

= pm,n(g
∗f ∗wi(ξ), g

∗f ∗wj(η))

= g∗f ∗pm,n(σi, σ
′
j).

But g∗f ∗ is injective, so w(ξ ⊗ η) = pm,n(σi, σ
′
j).
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7. Algebraic topology 2: HW7

Problem 1. We can similarly define the Euler class e(ξ) ∈ Hn(B;Z/2Z)
for any vector bundle ξ, regardless if ξ is orientable or not.

(1) Prove that e(γ11) is nonzero.

(2) Prove that e(γ1) is nonzero.

(3) Prove that e(ξ) = w1(ξ) for any line bundle ξ.

Solution. Similar to Z-case, the Euler class e(ξ) should be defined via
Hn(B;Z/2) Hn(E;Z/2) Hn(E,E0;Z/2) Hn(F, F0;Z/2)

e u|E u uF 6= 0

p∗∼ i∗

where u is the Thom class, i.e. Hk(E;Z/2Z) •⌣u−−→
∼

Hk+n(E,E0;Z/2Z).
For (1)(2), where ξ is non-trivial, φ : H1(B;Z/2Z) ∼−→ H2(E,E0;Z/2),

x 7→ p∗x ^ u,

gives e(ξ) = φ−1(u ^ u). Here u ^ u 6= 0, since it is the image of
u|E 6= 0 under •^ u.
For (3), consider

ξ = f ∗γ1 γ1

B P∞f

Since H1(P∞;Z/2Z) = Z/2Zw1(γ1) and e(γ1) 6= 0, we must have e(γ1) =
w1(γ), thus w1(ξ) = f ∗w1(γ1) = f ∗e(γ1) = e(ξ).

Problem 2. Prove that an oriented rank 2 vector bundle over a para-
compact B is trivial if and only if it has a non-vanishing section.

Solution. “⇒” is obvious. As for “⇐”, if ξ2 has a non-vanishing section,
then we can write ξ = ε1B ⊕ η1. Since ξ is orientable, w1(η) = w1(ξ) = 0,
thus η must be a trivial line bundle, as a result, ξ is a trivial bundle.

Problem 3. Consider a homogeneous polynomial f(x0, x1, x2) of degree
d. Let X = {f = 0}. Such an X is called an algebraic curve of degree d.
Let H be the subspace of CP2 defined by x2 = 0.
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(1) Assume that f is non-singular and hence X is a smooth manifold
with a fundamental class [X] ∈ H2(CP2;Z), prove that [X] = d[H].

(2) Prove that if two algebraic curvesX and Y of degree d and d′ intersect
transversely, then they intersect at dd′ many points.

Solution. (1) We show first that X and H intersect at d points. Pluging
in x2 = 0, and divide both sides by xd1 or xd2, we transfer f = 0 into
a polynomial F = ady

d + · · ·+ a0, where y = x1/x2 or x2/x1 (take a
suitable one). Over C, F must have d zeros, these correspond to the
intersection of X and H. For X in generic position, it is transverse.
Since H ∼= CP1 ⊂ CP2, PD[H] ∈ H2(CP2) is a generator. So [X] ∗
[H] = [X ∩H] = d[pt] tells that [X] = d[H].

(2) For non-singular curves, uing (1), [X∩Y ] = [X]∗[Y ] = dd′[H]∗[H] =
dd′[pt], i.e. there are dd′ many points.
Remark. For general algebraic curves, we shall recall the Bézout
theorem, which states that if f, g have no common factors (X =
{f = 0}, Y = {g = 0}), then

dd′ =
∑
P

I(P,X ∩ Y ).

In transverse case, I(P,X ∩ Y ) = 1 for every P ∈ X ∩ Y .
This theorem can be proved (algebraically) by considering for large
p, the dimension of degree p part dim(C[x0, x1, x2]/(f, g))p, which is
equivalent to the right hand side, and equals dd′ in this case.

Problem 4. Let M be a manifold. Write down the definition for M to
be orientable in AT1. Now assume that M is also a smooth manifold.
Write down a definition for the tangent bundle of M to be orientable.
Check that a smooth manifold M is an orientable manifold if and only
if its tangent bundle is an orientable bundle.

Solution. In AT1, M is orientable if there is an oriented atalas {Uα},
i.e. the transition function ϕαβ fixes Hn(M |p) for any α, β, p ∈ Uα ∩ Uβ.
The tangent bundle is orientable if ∧nTM has a non-vanishing section.
Now we check the equivalence. Consider the de Rham cohomology, for
x ∈ Uα, and ω ∈ ∧nT ∗M , we can take fα which takes value 1 near x and
vanishes outside Uα. Then fαω is a generator of Hn

dR,c(Uα) = Hn(M |x).
Conversely, for compatible generators ωα of Hn

dR,c(Uα) = Hn(M |x), we
can take a partition of unity subordinate to {Uα} to get a global form
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ω. In conclusion, the existence of a section of ∧nTM is equivalent to
the existence of a global top form ω, which is equivalent to a compatible
choice of generators of each Hn(M |x).

Problem 5. The natural inclusion Rn+1 ⊂ Cn+1 induces a map f :
RPn → CPn given by [x0 : · · · : xn] 7→ [x0 : · · · : xn]. Compute the
induced map f ∗ on the cohomology ring with Z/2Z coefficients.

Solution. Recall that H∗(CPn;Z/2Z) = Z/2Z[α]/(αn+1), degα = 2, and
H∗(RPn;Z/2Z) = Z/2Z[β]/(βn+1), deg β = 1. So the point is to compute
f ∗α ∈ H2(RP;Z/2Z).
For n = 1, obviously, f ∗α = 0. For n ⩾ 2, take α ∈ H2(CPn;Z/2) with
[H] = PD−1(α), and X ⊂ RPn with [X] ∈ H2(RPn;Z/2).

〈f ∗α, [X]〉 = 〈α, [f(X)]〉 = 〈PD[H]^ PD(f(X)), [CPn]〉
= 〈PD[H ⋔ f(X)], [CPn]〉.

Note that H ⋔ f(X) ∼= f(RP1) ' pt ⊂ CPn (e.g. H = {zn−2 = 0}, X =
{x0 = · · · = xn−3 = 0}, H ⋔ f(X) = {[0 : · · · : ka : kb]|a, b ∈ R}), since
π1(CPn) = 0, thus 〈f ∗α, [X]〉 = 1. In conclusion, f ∗ : Z/2Z[α]/(αn+1) ↠
Z/2Z[β2]/(βn+1) ⊂ Z/2Z[β]/(βn+1).

Problem 6. Let Vk(Cn) denote the Stiefel manifold consisting of se-
quences of orthonormal vectors (v1, · · · , vk) in Cn.
(1) Find the largest i such that Vk(Cn) is i-connected.
(2) Compute the first nontrivial homotopy group πi+1(Vk(Cn)).
Solution. For k = n, Vn(Cn) = U(n), π1(Un) = Z. So consider k < n.
(1) Vk(Cn) ∼= SU(n)/SU(n− k),

→ πm(SU(n− k))→ πm(SU(n))→ πm(Vk(Cn))→

and S2n−1 ∼= SU(n)/SU(n− 1),

→ πm(SU(n− 1))→ πm(SU(n))→ πm(S
2n−1)→

thus for m < 2(n − 1), πm(SU(n − 1)) = πm(SU(n)), and for m =
2(n − 1), πm(SU(n − 1)) → πm(SU(n)) is surjective. So for m <
2(n− k), πm(SU(n− k)) ∼= πm(SU(n)), and for m = 2(n− k),

πm(SU(n− k)) ↠ πm(SU(n))→ πm(Vk(Cn)).

In conclusion, πm(Vk(Cn)) = 0 for m ⩽ 2(n − k). The result is
i = 2(n− k), since in (2) we shall prove π2(n−k)+1(Vk(Cn)) = Z.
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(2) Recall that H∗(SU(n)) = ∧(a3, a5, · · · , a2n−1), so

∧(a3, a5, · · · , a2n−1) = ∧(a3, a5, · · · , a2(n−k)−1)⊗H∗(Vk(Cn)),

since there is no monodromy. From this, H2(n−k)+2(Vk(Cn)) = 0,
H2(n−k)+1(Vk(Cn)) = Z, using

0→ Ext1Z(Hq+1(X),Z)→ Hq(X)→ HomZ(H
q(X),Z)→ 0,

We get H2(n−k)+1(Vk(Cn)) = Z. Now use Hurewicz theorem, we have
π2(n−k)+1(Vk(Cn)) = Z.
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8. Algebraic topology 2: HW8

Problem 1. Let γ∨ be the dual of the cannonical bundle over G2(C4),
Σ1 := {W ∈ G2(C4) |C2 ∩W 6= 0}, σ1 the Poincaré dual of Σ1.

(1) Prove that c1(∧2γ∨) = σ1.

(2) Prove that c1(γ∨) = σ1.

Solution. (1) For any linearly independent f, g ∈ HomC(C4,C), s :
W 7→ f |W ∧ g|W = f |W ⊗ g|W − g|W ⊗ f |W is a section of ∧2γ∨.
Note that ker f ∩ ker g ∼= C2, 1 ⩽ dimW ∩ ker f ⩽ 2, similar for g.

• if dimW ∩ ker f = 2 or dimW ∩ ker g = 2, then W ⊂ ker f or
dimW ⊂ ker g, either way, s(W ) ≡ 0;

• if dimW ∩ ker f = dimW ∩ ker g = 1, take u 6= 0 ∈ W ∩ ker f
and v 6= 0 ∈ W ∩ ker g.
– if u, v are linearly dependent, or equivalently, W ∩ ker f ∩

ker g 6= 0, take w ⊥ u, then s(W )(k1u + l1w, k2u + l2w) =
0 + l1l2s(W )(w,w) = 0, i.e. s(W ) ≡ 0;

– if u, v are linearly independent, or equivalently W ∩ ker f ∩
ker g = 0, then s(W )(u, v) = 0− f(v)g(u) 6= 0.

In conclusion, s(W ) ≡ 0 if and only if W ∩ ker f ∩ ker g 6= 0, thus
Zs = {W | s(w) ≡ 0} = {W |W ∩ ker f ∩ ker g 6= 0} = Σ1.
Thus c1(∧2γ∨) = e(∧2γ∨) = PD([Zs]) = σ1.

(2) Using splitting principle, we may assume γ∨ splits into a sum ξ ⊕ η
of line bundles (for more details, see Problem 2.)

1 + c1(∧2γ∨) = c(∧2γ∨) = c(ξ ⊗ η)
= 1 + c1(ξ) + c1(η) = 1 + c1(γ

∨).

Thus c1(γ∨) = c1(∧2γ∨) = σ1.
Problem 2. Suppose ω is a 2-dimensional complex vector bundle. Com-
pute the Chern classes of the third symmetric power Sym3ω in terms of
Chern classes of ω.

Solution. Using splitting principle, there is a bundle f : ω′ = ξ1⊕η1 → ω
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such that f ∗ : Hk(B(ω);Z)→ Hk(B(ω′);Z) is injective. Then

c(Sym3ω′) = c(Sym3(ξ ⊕ η))
= c(ξ⊗3) · c(ξ⊗2 ⊗ η) · c(ξ ⊗ η⊗2) · c(η⊗3)
= (1 + 3c1(ξ)) · (1 + 2c1(ξ) + c1(η))

· (1 + c1(ξ) + 2c1(η)) · (1 + 3c1(η))

(with wolframalpha) = 45c2d2 + 18c3d+ 18cd3

+ 6c3 + 6d3 + 48c2d+ 48cd2

+ 11c2 + 11d2 + 32cd+ 6c+ 6d+ 1

= 45c22 + 18c2(c
2
1 − 2c2) + 6c1(c

2
1 − 3c2)

+ 48c1c2 + 11(c21 − 2c2) + 32c2 + 6c1 + 1

= (9c22 + 18c21c2) + (6c31 + 30c1c2)

+ (11c21 + 10c2) + 6c1 + 1.

where c = c1(ξ), d = c1(η), c1 = c1(ω
′), c2 = c2(ω

′). Since f ∗ is injective,
for ω, similarly, we have

c(Sym3ω) = (9c2(ω)
2 + 18c1(ω)

2c2(ω)) + (6c1(ω)
3 + 30c1(ω)c2(ω))

+ (11c1(ω)
2 + 10c2(ω)) + 6c1(ω) + 1.

Problem 3. Consider complex vector bundles over a paracompact B.

(1) Let V ectn(B) be the set of isomorphism classes of n-dimensional
complex vector bundles over B. Prove that V ect1(B) forms a group
under tensor product.

(2) Suppose ω is a 1-dimensional complex vector bundle over B. Prove
that ω is trivial if and only if c1(ω) is trivial.

(3) Prove that V ect1(B) ∼= H2(B;Z) as groups.

Solution. (1) The group structure

• the product is ξ · η = ξ ⊗C η, it is associative and commutative,
by the associativity and commutativity (up to an isomorphism)
of tensor product on each fiber.

• the zero element is ε1C, since ξ ⊗C ε
1
C = ξ for any ξ.

• the inverse of ξ is ξ∨ = HomC(ξ, ε
1
C), by the pairing.

(2) “⇒” is obvious. For “⇐”, see (3).
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(3) The map ϕ : V ect1(B) → H2(B;Z), ξ 7→ c1(ξ) is a group homo-
morphism, since c1(ξ ⊗C η) = c1(ξ) + c1(η). Consider the universal
bundle,

E(ξ) f ∗ξE(γ
1) E(γ1)

B CP∞

∼

fξ

we have
[B,CP∞] ψ−→ V ect1(B)

φ−→ H2(B;Z)
where ψ([f ]) = f ∗(γ1), ϕ(ξ) = c1(ξ), and the composition is

[f ] 7→ f ∗(γ1) 7→ c1(f
∗(γ1)) = f ∗c1(γ

1).

The map ψ is bijective by the 2 properties of universal bundle. The
composition is bijective, for c1(γ1) is a generator of H2(CP∞;Z),
and the isomorphism [B;K(G, 2)] ∼= H2(B;G) for G = Z, since
CP∞ = K(Z, 2).
Thus ψ : V ect1(B) ∼= H2(B;Z), the injectivity implies (2).

Problem 4. Let UT (Σg) be the total space of the unit tangent bundle
over a closed oriented surface of genus g. Compute the cohomology
groups of UT (Σg).

Solution. Fiber bundle: S1 i−→ X = UTΣg
π−→ Σg. Recall the Gysin

sequence, we have the following long exact sequence

· · · → Hk(Σg)→ Hk(X)→ Hk−1(Σg)
•⌣e−−→ Hk+1(Σg)→ · · ·

where e is th Euler class of Σg. Recall also H i(Σg) =


Z, i = 0, 2
Z2g, i = 1
0, i ⩾ 3

, so

0 Z H0(X) 0 Z2g H1(X)

Z

Z

H2(X) Z2g 0 H3(X) Z 0

•⌣e
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Here that •^ e amounts to the multiplication by χ(Σg) = 2− 2g. Thus

H i(X) =

{
Z , i = 0, 3
Z2g+1 , i = 1, 2

for g = 1, and

H i(X) =


Z , i = 0, 3
Z2g , i = 1,
Z2g ⊕ Z/(2− 2g)Z , i = 2

for g 6= 1.
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9. Algebraic topology 2: HW9

Problem 1. Consider ξ := (γ1n)
⊥ denote the orthogonal complement of

the canonical line bundle γ1n over RPn.
(1) Fix u0 ∈ RPn. Check that the map s(u) = u0 − (u0 · u)u defines

a section of the vector bundle ξ which is non-zero on the (n − 1)-
skeleton of RPn.

(2) The section s for the bundle Rn\{0} → E0 → RPn which is ξ re-
moving zero defines an obstruction cocycle ob(s) : Cn(RPn) ∼= Z →
πn−1(Rn\{0}) ∼= Z. Prove that ob(s) is an isomorphism.

(3) Conclude that the primary obstruction to the bundle Rn\{0} →
E0 → RPn is non-zero in Hn(RPn;Z/2Z).

(4) Combining the lecture on Tuesday 4/22 and what you have done in
this problem, convince yourself that the first obstruction to a non-
zero section of γn over Gn modulo 2 is equal to wn(γ

n). Convince
yourself that a similar argument works for wj(γn) as well.

Solution. (1) s is first defined on Sn, and satisfies s(−u) = s(u), also,
u · s(u) = u · u0 − u · (u0 · u)u = 0, so the image lies in ξ. Note that
s(u) = 0 only for u = ±u0, so s is non-vanishing on the great circle
perpendicular to u0, which correspond to the (n− 1)-skeleton.

(2) Consider the following diagram,
Φ∗E0 E0

ϕ∗E0 E0

Dn RPn

Sn−1 RPn−1

Φ∗s

Φ

s

φ

φ∗s s

which gives Sn−1 → Dn Φ∗s−−→ Φ∗E0
∼= Dn × (Rn\{0})→ Rn\{0}.

Under this map, n-cell Φ of RPn corresponds to id : Sn−1 → Rn\{0},
which gives a generator of πn−1(Rn\{0}). Thus ob(s) is isomorphic.
(see the picture on [MS, page 142], the rotation around Sn−1, which
leaves the vector field invariant, generates πn−1(Sn−1))

(3) As in (2), ob(s)(Φ) = [id] ∈ πn−1(Rn\{0}). Note that around u0 the
vector field points towards u0, so the section can not be extended to
u0 continuously. Hence ob(s) 6= 0 ∈ Hn(RPn;Z/2Z).
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(4) (not required)[VBKT, page 104].

Problem 2. Let F → E → B be a fiber bundle where B is a CW
complex of dimension n. Prove that if F is (n − 1)-connected, then the
bundle always has a section. Prove that if F is (n − 2)-connected, the
bundle has a section if and only if its first obstruction is zero.

Solution. For F being (k − 1)-connected, from obstruction theory, we
can build a section inductively from s0 on B0 (which exists trivially), to
a section sk on Bk, and sk can be extended to sk+1 on Bk+1 if and only
if ob(sk) = 0 for the first obstruction class ob(sk) ∈ Hk+1(B; πk(F )).
Take k = n and B = Bn, there exists a section on B; take k = n− 1 and
B = Bn, if ob(sn−1) = 0, then there is a section on B, conversely, using
obstruction theory for a section s on B, we must have ob(s) = 0.

Problem 3. Use obstruction theory to prove that a smooth compact
manifold admits a non-vanishing vector field if χ(M) = 0. This is the
converse to the Poincaré-Hopf theorem.

Solution. If M is orientable, from obstruction theory, the first obstruc-
tion of the bundle Sn−1 → V1(TM)→M is the Euler class e ∈ Hn(M ;Z).
If χ(M) = 0, then e = 0, and we can construct a section on M induc-
tively. Similarly, if M is non-orientable, we can consider the Z/2Z Euler
class, which is the first obstruction, and is also zero when χ(M) = 0
([Steenrod, §39]).

Problem 4. Prove that any complex vector bundle over S1 must be
trivial.

Solution. For any Cn-bundle ξ over S1 , consider the bundle U(n) =
Vn(Cn) → Vn(ξ) → S1. The obstruction for a section on pt ∈ S1 to
extend to S1 is c1(S1) = 0 ∈ H2(S1;Z) = 0, so such a section exists. As
a result, ξ has n linearly independent sections, i.e. is trivial.

Problem 5. Prove that Diffeo+(S1), the group of orientation-preserving
diffeomorphisms of S1, deformation retracts onto the subgroup U(1).

Solution. Let Diffeo+0 (S1) be the subgroup of Diffeo+(S1) with 0 ∈ S1 =
R/Z fixed, then obviously, we have

Diffeo+(S1) = Diffeo+0 (S1)U(1).

We only have to show that Diffeo+0 (S1) is contractible. For any element
f ∈ Diffeo+0 (S1), it lifts to
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R R

S1 S1

f̃

f̃ : R→ R, with f̃(x+ 1) = f̃(x) + d, d ∈ Z, and f̃(0) = 0 . Since f is a
diffeomorphism, f̃ should be a homotopy equivalence, so d = ±1. For f
to be orientation-preserving, d must be 1. In this case,

H(x, t) = tx+ (1− t)f̃(x)

gives a homotopy between f̃ and idS1, thus Diffeo+0 (S1) retracts to idS1.

Problem 6. Prove that the topological join of an n-connected space and
an m-connected space is (n+m+ 2)-connected.

Solution. The topological join of M,N is given by

M ∗N =M ×N × [0, 1]/ ∼

where (a, b1, 0) ∼ (a, b2, 0), (a1, b, 0) ∼ (a2, b, 0). We write A = M ∗N =
{(1− t)a+ tb | a ∈M, b ∈ N} for simplicity.
There is an isomorphism (see G. Whitehead’s paper or J. Milnor’s paper)

H̃k+1(M ∗N) ∼=
∑
i+j=k

H̃i(M)⊗ H̃j(N)⊕
∑

i+j=k−1

Tor1Z(H̃i(M), H̃j(B)).

From Hurewicz’s theorem, π⩽m+n+2(A) = H⩽m+n+2(A) = 0, i.e. A is
(m+ n+ 2)-connected.
Here is a sketch of proof (from Milnor’s). There is a MV sequence

→ H̃k+1(M ∗N)→ H̃k(M ∩N)
ψ−→ H̃k(M)⊕ H̃k(N)

ϕ−→ H̃k(M ∗N)→

where M =
{
a ∈ A | t ⩽ 1

2

}
, N =

{
a ∈ A | t ⩾ 1

2

}
and thus M ∩ N ∼=

M × N,M ' M,N ' N . Since i1 : M → M ∗ N and i2 : N → M ∗ N
are null-homotopic (taking t = 1, 0 respectively), φ must be trivial.

0→ H̃k+1(M ∗N)→ H̃k(M ×N)
ψ−→ H̃k(M)⊕ H̃k(N)→ 0

Now we get the required formula from the above (splitting) exact se-
quence and Künneth formula.
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10. Algebraic topology 2: HW10

Problem 1. Compute the total Stiefel-Whitney class of the tangent
bundle of CPn.

Solution. Recall that the total Chern class of CPn is (1 + a)n+1, where
a ∈ H2(CPn;Z) is a generator, and also that the coefficient homomor-
phism

H∗(CPn;Z)→ H∗(CPn;Z/2Z)
sends c(CPn) to w(CPn). Thus the total Stiefel-Whitney class is (1 +
α)n+1, where α ∈ H2(CPn;Z/2Z) is a generator.

Problem 2. Compute the total Pontrjagin class of the tangent bundles
of Sn and CPn.

Solution. (1) For Sn, since TSn ⊕ ε1Sn = εn+1
Sn , p(Sn) = p(εn+1

Sn ) = 0.

(2) For CPn, we have

1− p1 + · · ·+ (−1)npn = c(CPn) · c(CPn)
= (1− a2)n+1

where a ∈ H2(CPn) is a generator. Thus the total Pontrjagin class
is (1 + a2)n+1.

Problem 3. (Stiefel-Whitney v.s. Pontrjagin classes) Prove that

w2
2i(ξ) = pi(ξ) mod 2

in H4i(B;Z/2Z) for each i.

Solution. The coefficient homomorphism

f : H∗(B;Z)→ H∗(B;Z/2Z)

sends c(ξ) to w(ξ). And since

pi(ξ) = (−1)i
i∑

j=1

(−1)jcj(ξ)c2i−j(ξ) = c2i (ξ) mod 2

so f(pi(ξ)) = f(c2i (ξ)) = w2
i (ξ).

Problem 4. Prove that if a smooth oriented closed manifold M 4n is the
boundary of an oriented compact manifold V 4n+1, then all Pontrjagin
numbers of M are zero.
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Solution. Note that TV |M = TM ⊕ ε1M , so for any Pontrjagin class
pk(M), we have from product formula that pk(M) = i∗pk(V ).

→ H i(V )
i∗−→ H i(M)

δ−→ H i+1(V,M)

So from the exact-ness above, δpk(M) = 0. Thus

〈pi1(M) · · · pir(M), [M ]〉 = 〈pi1(M) · · · pir(M), ∂[V ]〉
= 〈δ(pi1(M) · · · pir(M)), [V ]〉 = 0

which means all the Pontrjagin numbers are zero.

Problem 5. Prove that

H∗(Gk(R∞);Q) = Q[p1, · · · , p[k/2]].

Solution. Recall that

H∗(G̃k(R∞);Q) =

{
Q[p1, · · · , p[k/2]] , k odd,
Q[p1, · · · , pk/2, e]/(pk/2 − e2) , k even

and that G̃k(R∞) is the oriented two-cover of Gk(R∞). According to
[Hatcher, §3.G], the map H∗(Gk(R∞);Q) → H∗(G̃k(R∞);Q) induced
by covering is injective with image H∗(G̃k(R∞);Q)Z/2Z. Note that the
Euler class depends on the orientation, while pi does not. So we have
H∗(Gk(R∞);Q) = H∗(G̃k(R∞);Q)Z/2Z = Q[p1, · · · , p[k/2]].
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11. Algebraic topology 2: HW11

Problem 1. For the following statement below, write down a lifting
problem that is equivalent to each of the statement below. For example,
a real vector bundle ξ over B is orientable if and only if its classifying
map B → BO(n) lifts to a map B → BSO(n). Draw a commutative
diagram for each lifting problem that you write down.

(1) a real vector bundle ξ is a sum of line bundles iff...

(2) a real vector bundle ξn = ηk ⊕ µn−k iff...

(3) a real vector bundle ξ has a non-vanishing section iff...

(4) a real vector bundle ξ has k nowhere dependent sections iff...

(5) a real vector bundle ξ2n has a complex structure iff...

Solution. (1) its classifying map B → BO(n) lifts to B → B(O(1)⊕n);

(2) its classifying map B → BO(n) lifts to B → B(O(k)×O(n− k));

(3) its classifying map B → BO(n) lifts to B → BO(n− 1);

(4) its classifying map B → BO(n) lifts to B → BO(n− k));

(5) its classifying map B → BO(2n) lifts to B → BU(n).

Problem 2. Show that a real 2-dimensional vector bundle ξ has a
complex structure if and only if w1(ξ) = 0.

Solution. w1(ξ) = 0 if and only if ξ is orientable, which is equivalent to
the condition that B → BO(2) lifts to BSO(2) = BU(1), which happens
if and only if ξ has a complex structure, from (5) in Problem 1..

Problem 3. The isomorphism Cn+m ∼= Cn ⊕ Cm induces a map of Lie
groups Un × Um → Un+m, which further induces a map of classifying
spaces:

φ : B(Un × Um)→ BUn+m.

Compute the induced map

φ∗ : H∗(BUn+m;Z)→ H∗(BUn × BUm;Z).

Solution. Recall that H∗(BU(k);Z) = Z[c1, · · · , ck], where ci is the i-th
Chern class of the universal bundle. Note that
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γnC ⊕ γmC φ∗γn+mC γn+mC

BU(n)× BU(m) BU(n+m)
ϕ

Using the Whitney sum formula,

φ∗(c(γn+mC )) = c(γnC ⊕ γmC ) = c(γnC) · c(γmC ),

or equivalently, φ∗ck(γn+mC ) =
∑

i+j=k

ci(γ
n
C) · cj(γmC ).

Problem 4. Consider the determinant map det : Un → U1, compute the
induced map

H∗(BU1;Z)→ H∗(BUn;Z).

Solution. Suppose det : U(n)→ U(1) induces φ : BU(n)→ BU(1),

∧nγnC φ∗γ1C γ1C

Gn(R∞) CP∞ϕ

then φ∗c1(γ
1
C) = c1(∧nγnC). Using splitting principle, we consider simply

the case γnC = ⊕iξi, where c1(∧nγnC) = c1(⊗iξi) =
∑

i c1(ξi) = c1(γ
n
C).

Hence φ∗c1(γ1C) = c1(γ
n
C), or equivalently, φ∗ : Z[c1(γ1C)] ∼= Z[c1(γnC)].

Problem 5. Consider the map f : U1 → Un given by λ 7→ λI, describe
the induced map

Bf ∗ : H∗(BUn;Z)→ H∗(BU1;Z).

Solution. Suppose f : U(1)→ U(n) induces φ : BU(1)→ BU(n),

(γ1C)
⊕n φ∗γnC γnC

CP∞ Gn(R∞)
ϕ

then φ∗c(γnC) = (c(γ1C))
n = (1 + c1(γ

n
C))

n, or equivalently we have φ∗ :
Z[ci(γnC)] ∼= Z[

(
n
i

)
c1(γ

1
C)

i] .

Problem 6. Consider a smooth orientable circle bundle S1 → E → B
over a CW complex B. Prove that this bundle is trivial if it has a
continuous section.
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Solution. “⇒” is obvious. For “⇐”, consider the correspondence{
principal bundle
Diff+(S1)→ P → B

}
←→

{
orientable S1-bundle
F → E → B

}
which is given by P → B 7→ P ×Diff+(S1) S

1 → B. Recall in HW 9.
that Diff+(S1) ' U(1) = S1. Thus E = P ×U(1) S

1 ∼= P , (in general,
P ×G (G/H) ∼= P/H), which means we can regard E → B as a principal
U(1) bundle up to a homotopy equivalence.
Recall that any principal bundle is trivial if and only if it has a continuous
section, thus E → B is trivial in this case.
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