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1. Algebraic topology 2: HW1

Problem 1. Check that the derived couple of an exact couple is still an
exact couple.

Solution. Consider the following exact couple, where d = jok : E — E

A—" 5 A

N

The derived couple is defined by setting

o« ' =kerd/imd e j'ii(a) = [j(a)]
e AA=imiC A o k':[e] — k(e)
'?;/:7;|A/ Od:jlok/

)

A — T

N

(1) First, j' and k" are well-defined.

o if i(a) = i(b), then (a — b) € keri =1imk, so j(a —b) € imd, i.e.
(a)] = 17 (b)};
o if [e] = [f], then (e — f) €imjok, since koj =0, k(e — f) =0,
ie. k(e) =k(f).
(2) Second, exactness at (left) A’.
Obviously, im &’ = k(kerd). So a € keri’ <= a € keriNimi <
a€imknNkerj <= a=k(b) with jok(b) =0 <= a €imk’.
(3) Third, exactness at (right) A'.
a =1i(b) € kerj/ < j(b) € imd <= j(b) =
b—k(c) € kerj =imi < b= k(c)+i(f) <:> a
iok(c)+io0i(f)=1io0id(f) € im7’.
(4) Forth, exactness at FE'.
le] € kerk'je € kerd <= e € kerdNimj <= e = ja) <

le] = li(a)] = j'(i(a)) € im j".

Thus the derived couple is also exact.

o k(c)
= i(b) =
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Problem 2. Let C' = ¢,,C), be a filtered chain complex. In other words,
we have a sequence of inclusions:

L F,C C FppyC C -

where each F,C = @, F,C,, is a subcomplex of C' and U,F,C = C. The
associated graded complex is

GrC = @GTPC @ p10

n,p

(1) Let A =&, ,F,C,,. Show that A and GrC form an exact couple;
(2) Prove that there is a spectral sequence with E;,q = H, ,(Gr,C);

(3) Suppose that the filtration is finite, i.e. F,C' = F,4;C for all but
finitely many p’s. Prove that the spectral sequence above converges
to B, = GryH,,(C) for some filtration on H,,(C).

Solution. (1) We have the following short exact sequence
0— F, 1C, — F,C, » F,C,/F,_1C, — 0,

from which we get a long exact sequence of homology groups:

— H,(F,-1C) ' H, (F,C) 5, (F,C/F,_1C)
[
Hn_l(Fp_lC) —
where 7, j are induced by inclusion and quotient, and £ is induced by

8:Cy— Cy_y. Let M = @, ,H,(F,C), E = ®,,H,(F,C/F,_,C),

M—" s M

N A

The exactness of the couple comes from the long exact sequence
above.

(2) From the exact couple in (1), we get a spectral sequence by taking
derived couple. Write n = p + ¢, the first page consists of

E,, = H,(F,C/F,1C) = H, (Gr,C).



(3) In (1), M,,, = H,(F,C). If the filtration is finite, then M, _, =
)

H,(0) =0, M, = H,(C). In the r-th stage, we have
EIH—L]H—r—l

Je

T iT r jr r
Mn,p+r—2 E— Mn,p—i—r—l E— En,p

[+
r Jr s r
Mn—l,p—l Mn—l,p

Asr — oo, My, 1, M; 4, tend to the images of M, o, i.e. 0.

Also B}y i1 = Hiy1(Grypyr1C) tends to 0. Thus

n
iy Jr k.
0 } Mg,p—kr—Q } M?Z,p—i—r—l } E?Z,p > 0

tells us B, = i" (M) /1" (Myp-1). We set i" (M, 1) — FP~
"1 (M,,) — FP, as r — oo, where FP’™' C FP C M, = H,(C).
Write n = p + ¢, and take a filtration

- FPCFP, Co-CFX = H,,(0),

p+q ptq ptq —

then £, = GryH,(C).



2. Algebraic topology 2: HW?2

Problem 1. Let F i> X 5 Bbea fibration. Write down a commutative
diagram similar to the following

H"(B) ——— H"(X)

L]

By’ —— B
for H"(F), H(X),Ey",E%". Label all the maps depending whether
they are injective or surjective or isomorphism or ¢*.
Solution. The diagram is
H'(X) —“— H"(F)

Ll

O,TL c s O,TL
Eoo E2

Problem 2.[five-term exact sequence| Let F %y X Iy Bbea fiber bundle
over a path-connected CW complex B with trivial monodromy. Prove
that there is an exact sequence:

0— HYB) = HY(X) — H'(F) - H*B) — H*(X)
Solution. Consider the following diagram

0,1 0,1 2,0 2,0
0 E0 5 EY D —

L1

HY(B) —— HYX) —— HY(F) —— H?*(B) —— H*(X)
| H

A N

o~

1 1 d 2
E,) —— EL0 Byt —2 o B2

(1) Exactness at H%(B). Note that E2° = E3°, so the kernel is ker(E;" —
By’ = By’ /imdy) = im dy;

(2) Exactness at H'(F). Note that E%' = Ey'| so the image is im(E%! —
Ey') = By = ker dy;



(3) Exactness at H'(X), H'(B). Note that E;° = E20 = H'(B). Thus
it is exact at H'(B). Take a filtration of H*(X)

HY (X)=F,>DF=H'(B)DF,D>---
The kernel at H'(X) is ker(HY(X) — E% = Fy/Fy) = HY(B).
Thus we have a five-term exact sequence.

Problem 3.[Gysin sequence| Let S" — X — B be a fibration where
the fiber is a sphere. Suppose that the monodromy is trivial. Prove
that there is an element e € H"1(B) such that the cup product with
e gives a group homomorphism which fits into a long exact sequence as
the following:

... = HYB) - H*(X) - H*"(B) - H*"'Y(B) - - .-

Solution. Consider the following diagram

H="1(B) Gryp_n H*(X) Bl
- A \[
HYB) — = HMX) — H""(B) -1 g+1(B)
k,0 @ ; )
E, » ER0

Note that EM!, = H?(B) for ¢ = 0,n and vanishes otherwise. The map
dpy1 : BP9 — EPTTH" above s defined via the cup product with some
e € H""(B).

(1) Exactness at H*"(B). The image is E¥™" = EF 0" = kerdp 1.

(2) Exactness at H*(X). Note that E2FP = Gr,H*(X) is possibly non-
zero only for

e« k—p=0,ie Gr.H'X);
e k—p=nmn,ie Gr_,H*X).
Thus H*(X) = &Gr,H*(X) = EE-mn @ EEO that is it.
(3) Exactness at H*(B). The kernel is ker(Ey" — EF0) = imd,,;.

Thus we have the required exact sequence.



Problem 4.[Wang sequence] Let F' — X — S” be a fibration where the
basis is a sphere with n > 2. Prove that H*(F) and H*(X) fit in a long

exact sequence.

Solution. Consider the following diagram

H"1(F) D Y

EN
dn+1 =~
~+

B —— Gr,H*(X)

(1) Exactness at H*(F). The image is E%F = kerd,,.
2) Exactness at H*(X). Note that EP*? = Gr,H*(X) is possibly non-
( ) 00 p p y
zero only for
e p=0,ie GroH*X);
e p=mn,ie Gr,H"X).
Thus H*(X) = @Gr,H*(X) = E%* " @ E% that is it.
(3) Exactness at H*"(F). The kernel is ker(H*"(F) — E%F") =
imd,,.
In conclusion, we have a long exact sequence
oo > HYY(F) = HY™"(F) - H¥X) = H*F) — - --

Problem 5.[Leray-Hirsch] Let F - X 5 B be a fiber bundle over
a path-connection CW complex B. Prove that if i* : H*(X;Q) —
H*(F;Q) is surjective, then we have an isomorphism of graded abelian
groups

H*(B;Q) ® H'(F;Q) = H'(X;Q).
Solution. First, consider the edge morphism

H(E) > H1(F)

! J

Egg)q SN Eg,q _ HO(B;Hq(F>> — HQ(F)m(B)




so H1(F)™(B) = H9(F), which means the action of m(B) on H*(F;Q)
is trivial. For simplicity, we drop the coefficient Q, obviously E5¢ =
H?(B; HY(F)) = H?(B) ® HY(F). Since i* is always surjective, we have

HM(X) —“— H"(F)

Ll

B — =

ie. d,: B9 — Er 1 g always trivial. Note that dy : E2? = B2 @
EY? — EPY297l g given by dy 1 BP0 — EPTPT EDY 5 EPO! which
are both trivial, so dy is always trivial. Follow the same procedure, we
can show that d, is trivial Vr, thus E2? = EP9. As a result, H"(X) =
&, Gr H"(X) = ®prq=nH(B) @ HY(F).



3. Algebraic topology 2: HW3

Problem 1. Consider the following configuration space of n distinct
points in C:

Conf,C := {(x1,--- ,z,) € C" | x; # x;,Vi # j}.
(1) Constuct a fiber bundle 7 : Conf,,,;C — Conf,C. What is the fiber?
(2) Prove that Conf,C is an Eilenberg-Maclane space, i.e. a K(G,1).
(3) Prove that the fiber bundle 7 has trivial monodromy.

(4) Prove that the fiber bundle 7 has a continuous section, i.e. a con-
tinuous map s : Conf,C — Conf, ;C such that 7 o s = id.

(5) Prove that the coholomogical Serre spectral sequence of the bundle
7 satisfies By = F.

(6) Prove that EPY is a free abelian group for all p, g.
(7) Prove that the extension problem is trivial and we have isomorphisms

of groups

oo

k
H*(Conf,C) = € EF7.
p=0

Conclude that H*(Conf,,C) is torsion free for all k.

(8) Compute Poincaré polynomial of Conf,C.
Solution. (1) Define 7 : Conf,,,;C — Conf,C,
(@1, s T, Tpaa) = (21,0 )

this is a fiber bundle, with fiber 7= (z1, -+ ,z,) = C\{z1, -+ , 2, }.

(2) From the fibration, we get a long exact sequence of homotopy groups
-+« = m(C\{n pts}) — m(Conf,+1C) — 7, (Conf,C) — - - -
Since C\{n pts} ~ v,S!, we have m,(Conf,1C) = m(Conf,C) for
k > 3, and
0 — my(Conf,1C) —my(Conf,C)

i
7" — m(Conf,11C) — m1(Conf,C) — 0

But Conf;C = C, so 7 vanishes for £ > 2 by induction, and only
m1(Conf,C) may be non-trivial.

9



(8) (the background(from Arnold’s paper) is the action of braid goup on
punctured space, which does not permute these punctured points...)
The elements in H!(C\{n pts}) are represented by the winding num-
bers around each punctured point, and the action of g € m(Conf,C)
does not permute these n points (in fact, it is realized as a pertur-
bation of these points), so it does not change the winding numbers.

(4) We only need to construct a continuous function f : C" — C such
that f(xy,--- ,z,) # x, Vi, then s : (zq, -+ ,2,) = (21, -+, Tn, f(25))
is a continous section. For example, take f = |z1| + -+ + |z,,| + 1.

(5) From (8), we know EY? = H?(Conf,C; H1(C\{n pts})) is the tensor
product of H?(Conf,C) and HY(C\{n pts}), the problem reduces to
HY(C\{n pts}). But HY(C\{n pts}) = 0 for ¢ > 2, so we only need
to show dy : HY(C\{n pts}) — H?*(Conf,C) is 0. Recall the five term
exact sequence in HW 2.

— HY(C\{n pts}) = H2(Conf,C) =5 H*(Conf,.,C)
as in (4), we have
id : H?(Conf,C) = H?(Conf,,,C) = H2(Conf,C)

so 7 must be injective, thus dy = 0. As a result, all the arrows in
E5 are zero, thus B3 = B3, similarly, we know B} = --- = Ej.

(H?(Conf,C))" ,q=1
(6) ESY = H?(Conf,C) ® HY(C\{n pts}) = < HP?(Conf,C) ,q =0,
0 ,q =2
For n = 1, this is obviously true. And if E}? is a free abelian group
for n = k, then for n = k + 1, the free-ness of H?(Conf;C) means
that there is no extension problem, so

H?(Conf},C) = H?(Conf,C) @ (H?~'(Conf;,C))*
is also a free abelian group.

(7) similar to (6), all the terms E}? are free, so there is no extension
problem, we have H*(Conf, C) = @F_ELFP.

(8) Write 3] = rank H?(Conf,,C), then we have an inductive relation

Bt = By +nf .

10
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Forn=1, 8t =1,8l =0,k > 2, so Pi(t) = 1. Then we have
Py(t) =1+t Py(t) =1+ 3t +2t> = (1 +t)(1 + 2¢).
If P(t) = (1+1t)---(1+ (k—1)t) = ag_1t* ' + - - + ag, then

Pk+1(t) :kak_ltk + (ak_l + kak_g)tk_l + -+ (CLl + kao)t + ag
=(1+ kt)(ap_1t" T+ -+ ap)
=(1+1t)- (1+kt)

Thus we have P,(t) = (14+1¢)---(1+ (n — 1)t) for all n.
Problem 2. Compute the cohomology ring H*(K(Z,n); Q) for n > 2.

Solution. Write B, = K(Z,n), then we have a fibration, OB, - X —
B,,, where B, is the loopspace, X is the path space, which is con-
tractible. Recall that 7 (QB,) = mp1(By), so OB, = B, 1. We

prove by induction that H*(B,; Q) = { QL] TS VO o here

Qlx,)/(z3) ,nisodd ’
degx, = n.

For n =1, B; = S, thus the statement is true.

Suppose it holds for k& < n, then since there is no torsion term, E5? =
H?(B,; H1(B,-1;Q)) = H?(B,;Q) ®q H!(B,-1;Q). But HP"(X) is
trivial, so d,, : E%"! — E™0 is an isomorphism. We have E%""! =
H" 4B, 1;Q) = Q with generator z, ;, E™ = EQ’O = H"(B,;Q) = Q
with generator x,. So up to a rescaling, we can assume d,x, 1 = .

o If n is even, by hypothesis, HY(B,_1;Q) is non-zero only for ¢ =
0,n — 1, so is EYY. Also H?(B,;Q) = 0for 1 < p < n—1, as
a result, if n { p, then H’(B,;Q) = 0, thus EY? = 0 for n { p.
As for n | p, H"(B,;Q) & --- = H"(B,;Q) = Q, and the map
d, : Efnn=l o pUtUn0 g ok s 2841 shows that z, — oF = 2F+1
thus H*(B,; Q) = Q[z,];

o If nis odd, by hypothesis, H1(B,_1;Q) is non-zero for ¢ = k(n — 1),
so consider d,, : Eﬁ’k(n_l) — Eﬁm’(k_l)(n_l). Note that

dn(xfz—l) = dn(ﬂfn—l)ﬂfﬁj + xn—1dn(3¢]flj)

k—1 k—2 2 k—2
- xnmn—l + xn_lxnwn—l + xnfldn(xn—l)

k-1

T— e e s — kxn'xnfl

so d, : ESFD oy gDl e always an isomorphism.  Since
HP*(X) is trivial, this tells that £ ;| = E* and is all zero except

11



for Eg;?l = Q. Thus H?(B,;Q) = @ for p = 0,n and is trivial
otherwise. As a result, H*(B,,; Q) = Q[x,]/(23).

According to the discussions above, the statement holds from induction.

Problem 3. Determine the Serre spectral sequence for cohomology over
Z of a fibration

S? — CP? — 54

Moreover, prove that the two graded algebras
D
iop

and

@ H'(CP?)

are isomorphic as graded modules but NOT isomorphic as graded alge-
bras.

Solution. The spectral sequence is

E5 page Ej3 page
2 | Zlx] Z|xy] 2 | Zlx] Z|xy)
21 21
T I
0|7 0 Zy] 0| Z 0 Zly]
1 2 3 4 0 1 2 3 4
H*(S") H*(S")

where 2 = EPY. Thus E = @;,E%P = Z%. But the ring structure
of E is Z[x,y]/(2?,y*) % Z[x]/(x*). This is for the product structure of
EY? and the cup product are not compatible, the product on E5“(as a

quotient) can not be lifted to H*(CP?3).
Remark. This fibration is called the twistor fibration as in this paper.

12
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We begin by recalling the Hopf map p: CP?> — HP!. If we identify C* with the left
quaternionic vector space H? via (zy, 22, 23, z4) <> (21 + 22, z3 + 24 ) then the Hopf
map p: CP* > HP! is given by p(Cv) = Hy, where v € C* = H? is nonzero.

The twistor fibration n: CP> — S* is obtained by composing p with the identi-
fication of HP! and $* c H® R = R’ given in the usual way by stereographic
projection from the south pole of S* onto the equatorial 4-plane H included in
HP! by g+ [1, q]. Specifically, this identification is given by

20192, 1911 — 19 1?
(919 Iqul |2612| ) 54, 2.1)
lq11* + 1921

so, writing R® as C® C @ R, = is given by

[91, 2] € HP' <

(G123 + 2224), 2124 — 2273), |21 + |22* — |z31* — |zal?)
2 2 2 2 *
[z1]* + |z2|" + |z3]" + |24l

([z1, 22, 23, z4]) =

2.2)
. _J

Problem 4. Compute the cohomology ring H*(F';Z) for F' the homo-
topy fiber of a map f : 5™ — S" of degree k for k,n > 1.

Solution. Write F), for the fiber, recall the Wang sequence in HW?2
s HT(SM S HY(E) & BTN E,) — HTTY(ST) - -

Take r > n + 1, we have H"(F,) = H™~("1(F,), so we only need to
consider 0 < r < n. Take 0 < r < n — 1, we have H"(F},) = 0, and the

left items are
0—7Z— H°(F,) =0

0— H"Y(F,) = H'(F,) = H"(S") — H"(F,) — 0
i.e. H(F,) =Z and

0— H"NF,) ™ Z —» HY(S") =Z 5 HY(F,) =0
Recall the long exact sequence of homotopy groups
TSN =2 (ST = Z = m i (Fy) = 0 — -

Since deg f = k, we have m, 1(F,) = Z/kZ. So Hurewicz theorem
tells that H, 1(F,) = m,_1(F,) = Z/kZ. Useing Universal coefficient
theorem, H""(F,) = 0, H"(F,) = Exty(H,_1(F},),Z) = Z/kZ.
Z/kZ ,r=n+s(n—1)
Asaresult, H'(F,) =< Z ;7 =20 . For the cup product
0 , otherwise
structure, note that for any z € H"™"=D(F,),

22 c H2n—|—23(n—1)(Fn) _ Hn+1+(2$+1)(n—1)(Fn) =0.

13



Thus the ring structure is simply

Z[ajna Lopn—1," " ]/(337217 ijn) x%n—la kx2n—17 e )
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4. Algebraic topology 2: HW4

Problem 1.

(1) Let f: 8% — K(Z,3) be a map that induces an isomorphism on 73.

Let X be a homotopy fiber of f (assuming that it is a CW complex).
Show that X is 3-connected and that m;(X) = m;(S®) for i > 3.

(2) Show that the fibration above gives a fibration
K(Z,s) — X — S°.

(8) Consider the Serre spectral sequence of the second fibration above
for cohomology over integers. Compute Es as a graded algebra in
terms of generators and relations. Show that Ey = Es.

(4) Determine the Ejs-differentials. Determine Fo.
(5) Compute H*(X;Z) and H;(X;Z) for all i.
(6) Conclude 74(S3) = 7Z/2.

(7) Let p be a prime. Prove that the first p-torsion in m;(X) is a Z/p in
T9p. Conclude the same for S°.

(8) Using the Hopf bundle, deduce the same for S2.

~

(9) Using the stability of homotopy groups of spheres, show that 7, 1(5")
Z]2 for n > 3.

Solution. (1) Consider the long exact sequence of homotopy groups
— Tuy1(K(Z,3)) = mo(X) = 7,(S?) = 1. (K(Z,3)) —
for n = 0,1, we get m,(X) = 7,(S3) = 0, for n = 2, we get
— m3(S%) 5 m(K(Z,3)) = m(X) — 0,
so m(X) =0, for n = 3, we get
0 — m3(X) = m3(5°) 5 m3(K(Z,3)) —,
so m3(X) = 0. And for n > 4, we get
0 — mp(X) = m(S?) = 0,
50 T, (X) = m,(S?).

15



(2) Suppose F' — X — S? is a fibration, then we have
— Tpe1(X) = T041(S?) = Tu(F) = (X)) — m,(S°) — .

So for n > 4 and n < 1, 7,(S%) = m,(X), thus m,(F) = 0. Also, for
n = 2, we get

— m3(X) =0 = m3(S?) = m(F) — 0,
so my(F') = 7Z, for n = 3, we get
— T (X) S my(S?) = m3(F) =0,
so m3(F') = 0. In conclusion F' is a K(Z,2) space.

(3) EY? = HP(S3 HI(F)). Recall that H?(S?) # 0 only for p = 0, 3, and
H*(K(Z,2)) = Z|xs], so the E, and Ej3 pages are

E5 page Ej3 page
5 : 5 |
4 |Z[3) Z[3y) 4 |Z[}) Zlryy]
d3
§3 QS \
T 9 AR Z|xoy) T 9 AR AEZY]
0l 7 Zly] 0| 7Z Zly]
1 2 3 1 2 3
H*(S?) H*(S?)

So EQ = Eg.

(4) Using Hurewicz theorem for X, H*(X) = H?*(z) = 0, so we have
from Wang sequence

H2(X)=0— HX(F) % HY(F) —» H3(X) =0,
which means dszy = +y, WLOG, assume dzzs = y. Moreover,
dszh = kal'dgas = kab™ly
so the Fy = E,, page is

16



5

4]0 7./37.

€3

T2 |0 727,

1

0|z 0
0 1 2 3

H*(S°)

(5) EY? = Gr,HP™(X), from the diagram above, the only possibly non-
trivial terms are GrsH2™3(X) = E2* = Z/(q + 1)Z, GroHY(X) =
Z,GroH**%(X) = 0 for ¢ > 0. Thus

0 _JZ/g+1)Z ,i=2¢+3,q=0
H(X) = { 0 , otherwise '

Using the following exact sequence
0 — Exty(H™(X),Z) — H,(X) — Homz(HY(X),Z) — 0,

=~ o [ Z)(qg+1Z ,i=29+2,q>0
Hi{X) = { 0 , otherwise '

(6) Using Hurewicz theorem again, m,(S?) = m4(X) = Hy(X) = Z/27Z.

(7) It is easy to see that m;(X) is always a torsion group for ¢ > 3.
For prime p, let C, be the class of torsion groups, such that any
G € Cy, g € G, we have ord g | (p!)* for some k > 1 (i.e. no factors of
any prime ¢ > p). The property of C, is preserved by tensor product
and short exact sequence, so C, is a Serre class.

Write p/ for the prime next to p. Using generalized Hurewicz theorem,
since H;(X) € C,p, for i < 2p/, so mi(X) € C, for i < 2p’. As a result,
for any prime p', w9, (X) is the first one which possibly contains some
p/-torsion. Also the map

h : 7T2p/(X) — ng/(X) = Z/p/Z

17



is a C, isomorphism, so the cokernel, is both a quotient of Z/p'Z
and a (p!)*-torsion for some k, thus it must be 0, which means h is
surjective. So there must be some p'-torsion element in oy (X) (e.g.
h~1(1)), then we know Z/p'Z is a subgroup of ma, (X).

In conclusion, me,(X) is the first one to contains Z/pZ as a subgroup.
Then from (1), this is also true for S3.

(8) For St — S% — S, we have a long exact sequence
— T(SY) = 1 (S?) = 1 (S?) = w1 (SY) — .
For n > 3, 7,(S%) = m,(5?), so the result in (7) is also true for S2.

(9) According to Freudenthal theorem, the map m;(S™) — ;1 (S™"1) is
an isomorphism for ¢ < 2n — 1. Forn > 2,1 =n+1,

Tus1(S™) = o (S" 1) = -+ = my(S°) = Z/2Z.

Problem 2. Compute H'(S';Z) with local coefficients where the action
of 71(S!) on Z is nontrivial (there is only one such action). Write down
a cellular chain complex and its differentials.

Solution. The cellular structure of R = :S’vl is

s

-1
Z[t, t 7] Z[t,t7] =0

so the cellular complex for the local system is
0— HOmZ[mfl](Z[t, t_l], Z) — HomZ[utq](Z[t, t_l], Z)

or t™ — (—1)™k gives Homgy,—1(Z[t, t7'],Z) = Z, in which case

0—Z57Z
where 7 is given by k — [:
Z[t’ t—l] tm’_n.m_tm—l ) Z[t’ t—l]
z:th(—1)m1<;_(_1)"% AH(—l)mk
7

thatis (k:1—k)€Zw— (2k:1—2k)€Z,s0i=2-, and H(S};Z) =
7.)27.

Problem 3. Let m = m(S!). Compute H,(S';Z[r]) and H*(S!; Z[n])
from definition. Write down a chain complex and its differentials.
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Solution. Since
Z[ta t_l] ®Z[t,t_1] Z[ta t_l] = HomZ[t,t_1]<Z[t7 t_l]a Z[ta t_l]) = Z[t7 t_l]

the chain complexes are

(-t
e

Z[t, Y Z[t,t7 =0

and »
0 z[t,t ] S 7).

So Ho(Sl;Z[T(]) = Z[t,t’l]/im((l — t’l)-) = Z,HI(SI;Z[T(]) = 7, the
others are all 0.

Problem 4.(2-C in [MS]) Existence theorem for Euclidean metrics. Us-
ing a partition of unity, show that any vector bundle over a paracompact
base space can be given a Euclidean metric.

Solution. Let {U,} be an countable atalas of B. For each U,, write
Oy 7r_1(U,\) = Uy, x R" = R" x R". We then define a Euclidean metric
on 7 1(U,), by putting the standard inner product on R”, i.e.

{(x,v), (z,w)) = (v, w)rr, Vo € R".

and take py((z,v)) = ((z,v), (x,v)). Now take a partition of unity {py}
subordinate to {U\}, let = >, papa, this gives a Euclidean metric on
the vector bundle.

Problem 5.(3-D in [MS]) If a vector bundle ¢ possesses a Euclidean
metric, show that ¢ is isomorphic to its dual bundle Hom(&, e?).

Solution. Suppose u is a Euclidean metric on &, then the quadratic form

(v,w) = 3 (u(v + w) — p(v) — p(w)) is an inner product.

Now define a map ¢ : E(¢) — E(Hom(¢,el)),
ven Hz)— (v,)) :7n(z) > R

First, this is a bundle map, since it preserves the base point. Second,
on each fiber, according to linear algebra, the map v — (v, ) is a linear
isomorphism. Thus ¢ ia a bundle isomorphism.

Problem 6.(3-E in [MS]) Show that the set of isomorphism classes of
1-dimensional vector bundles over B forms an abelian group with respect
to the tensor product operation. Show that a given R!-bundle ¢ possesses
a Euclidean metric if and only if £ represents an element of order < 2 in
this group.
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Solution. First, we show the group structure. For any [£], [], the prod-
uct is defined by [€ R 7).

o it is well-defined, since if £ = &', n = 1/, then on each fiber, as linear

spaces, ng(ac) = ng(a:), and 7, '(z) = ﬂ&l(x), then 7r£_®1§,(x) =
ey (), 50 €@ = € @1

e it is associative according to the associativity of tensor product;

e £®N=ENRE, so the product is Abelian;

o {®@el ¢ so[el] is the identity element;

o £ ®E&Y X el(verified on each fiber with linear algebra).

In conclusion, {[¢]} has a structure of an Abelian group.
Second, if & possesses a Euclidean metric, then Problem 5. tells that

£ ¢V thus [€) = [£®¢&] = [€Y], ie. [¢] is of order < 2. Conversely, if
E®E el then write ¢ : € = €Y. Up to a scaling, we can assume 1+ 1
in each fiber, then (-,-) : 77 (z) ® 77 (z) — R,

(v, w) = p(v)(w) = vw

is an inner product on 7 !(x). Similar to Problem 4., we can patch it
to get a Euclidean metric on &.
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5. Algebraic topology 2: HW5H

Problem 1.(4-A in [MS]) Show that the Stiefel-Whitney classes of a
Cartesian product are given by

k

wi(§ X n) =Y wi(€) X wy—i(n).

i=0
Solution. Let p1, ps be the projection of B(£ xn) on to B(£), B(n). Note
that E (& x n) = piE(&) ® p5E(n), so use the product formula,

wi (€ X 1) Zplwz < phwy—i(n).

Drop the pull-back for simplicity, we get the required formula.

Problem 2.(4-B in [MS]) Prove the following theorem of Stiefel. If
n + 1 = 2"m with m odd, then there do not exist 2" vector fields on the
projective space P", which are everywhere linearly independent.

Solution. For m = 1, n = 2" — 2 < 2", so the statement is obvious.
Now suppose m > 1, and there exist 2" such vector fields on P”. In this

case, we have a decomposition TP" = ¢ @7, where 7 is the complement
bundle of rank 2"(m — 1) — 1. Thus for £ > 2"(m — 1),

wi(P") = wi(7) = 0.

But this is impossible, since take k = 2"(m — 1), the number

() e

n+1

is an odd number, so wi(P"), as the degree k part of (14 )", must be
non-zero. This contradiction tells that there are no such vector fields.

Problem 3.(4-C in [MS]) A manifold M is said to admit a field of
tangent k-planes if its tangent bundle admits a sub-bundle of dimension
k. Show that P" admits a field of tangent 1-planes if and only if n is odd.
Show that P* and P® do not admit fields of tangent 2-planes.

Solution. First consider 1-planes.
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o If niseven, then w(P?) = (14+a)"™! = ... +a", i.e. w,(P") = a" # 0.
If there exists a 1-plane, then we have a decomposition TP" = £ @7,
where ¢ is of rank 1, 7 is of rank n — 1. Note that a" = w,(P") =

w1 (&)wy—1(n), so w1 (§) = a # 0. Hence
(1+a)"" = w(P") = w(w, = (1+a)w(n),
i.e. w(n) = (14 a)", this is impossible due to rank reason.

o If n is odd, we know there is a non-vanishing vector field on 5", thus
the induced vector field on P" is non-vanishing, this gives a 1-plane.

Second consider 2-planes. If there exists a 2-plane, similarly, we write
TP" = £ @ n, where £ is of rank 2, 7 is of rank n — 2, so a" = w,(P") =
wa(§)wy—a(n), as a result, wy(§) = a* # 0,

(14 a)"™ = wP") = w(w(n) = (1 + ka + a*)w(n).
Here that k # 0, due to rank reason of w(n), so k = 1.

e As for P4,
w(n) = (1+a+a®) 1 +a)
=(l+a+a®+a)(l+a+ah),
there exist a* term, which is impossible.
e As for P9,
w(n) = (1+a+a’)"(1+a)
=(l+a+d+a*+a®)(1+a+--+a,

there exists a® term, which is impossible.

Problem 4.(4-D in [MS]) If the n-dimensional manifold M can be im-
mersed in R"™! show that each w;(M) is equal to the i-fold cup product
wy (M), If P" can be immersed in R"™! show that n must be of the form
2" —1or2" =2,

Solution. If i : M™ — R"*! is an immersion, then we have a decompo-
sition ¢*TR"™t = TM @, as a result

1 =w(M)w(y) =w(M)(1+1).
Ift=0 wM)=1andif t #0, w(M)=1+t+---4+¢", in both case,
w;(M) = (w1 (M))". Now let M = P,
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o if £ =0, we should have
1= (1 + Cl)n+1,

this happens if and only if n + 1 = 2" for some r. (in Problem 2.
we have proved 2"(2k + 1) is not possible for k£ > 0)

o if t # 0, we should have
1=(14a)""'(1+a),
similarly, this happens if and only if n 4+ 2 = 2" for some 7.

Thus n must be of the form 2" — 1 or 2" — 2.

Problem 5.(4-E in [MS]) Show that the set 9, consisting of all un-
oriented cobordism classes of smooth closed n-manifolds can be made
into an additive goup. This cobordism group O, is finite by 4.11, and is
clearly a module over Z/27Z. Using the manifolds P? x P? and P4, show
that 91, contains at least four distinct elements.

Solution. The group structure

o the addition is [M] 4+ [N] = M U N, this is well defined since if
M ~ M',N ~ N'orsay 0A = MUM', 0B = NUN’, then 9(AUB) =
(MUN)U(M UN'), i.e. MUN ~ M'UN".

o the addition is associative and commutative, since ([M]+4[N])+[L] =
[MUNUL] = [M]+ ([N]+[L]),[M]+ [N] = [M UN] = [N] + [M].

o the zero element is [()].

o the inverse of [M] is itself, since d(M x [0,1]) = M U M.

Thus 9, is an Abelian group consisting of 2-torsions.
As for 91y, we compute the SW numbers, write m; (M) for the SW

number of M for wiwjwhw).

m0,0,0,1 "™1,0,10 70200 MM21,0,0 74,000

0 0 0 0 0 0

P2 x P2 1 0 1 0 0

P 1 0 0 0 1

(P2 xP2)UP4 0 0 1 0 1

(P? x P? is computed with Problem 1., (P? x P?) U P! is done by
summing up)
From this table, 0, S* P? x P?, P* are in different cobordism classes.
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Problem 6.(5-E in [MS]) Let £ be an R"-bundle over B.

(1)

(2)

(3)

(4)

Show that there exists a vector bundle n over B with £ & n trivial if
and only if there exists a bundle map & — ~"(R"**) for large k. If
such a map exists, & will be called a bundle of finite type.

Now assume that B is normal. Show that & has finite type if and
only if B is covered by finitely many open sets Uy, - - , U, with |y,

trivial.

If B is paracompact and has finite covering dimension, show (using
the argument of 5.9) that every & over B has finite type.

Using Stiefel-Whitney classes, show that the vector bundle ! over
P> does not have finite type.

Solution. (1) For “<", since 4"(R"™*) is a sub-bundle of 5?&”%), € is

(2)

(3)

also a sub-bundle of a trivial bundle. For “=", in order to construct
a bundle map f : & — 7"(R"**), it suffices to construct a linear
and injective map f: E(€) — R"*_ since the required map can be
defined by

~

f(e) = (J?(e)v (Fe))'

This is already done by & < g5

“«<" follows from Lemma 5.3. in [MS], since the proof uses compact-
ness only for a finite r (the normal property is used here). For “=",
consider the bundle map

E(§) — E(y"(R"™))

| |

B —— G,(R"™

So we can pull back a trivialization covering of G,,(R"**) to get a
trivialization covering of B. The later one is compact, so the covering
can be taken to be finite.

Being of finite covering dimension means that, there exists some
d < oo, such that for any open covering, there is a refinement, in
which each point is contained in no more that d open sets.

Now we mimick the proof of Lemma 5.9. in [MS]. Choose a locally
finite open covering {V,} such that o|y, is trivial, and (up to a re-
finement) suppose each point is covered for no more than d times.
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Choose an open covering {W,} with W, C V,. Let A\, : B — R be
a continuous function which equals 1 on W, and equals 0 outside of
Va. Now for S C {a}, let U(S) C B be the set of all b with

min Aq(b) > max Aa(b),

and let Uy be the union of U(S) with #S = k. So U}, is open and
B = U2 ,U;. Note that from this definition, b € U}, if and only if
Aa(b) > 0 for exactly k’s «, which means b € V,, for k’s set V,,. Thus
by assumption B = U¢_, U

Now use (2), B must be of finite type.

(4) If 4! is of finite type, then there exists a vector bundle n over P>
with £ @ 7 trivial. In this case

l=w(§®n) = (1+a)w(n)
sow(n) =14+a+---, ie. nis not of finite rank, that is impossible.
Problem 7. Consider vector bundles over a paracompact base B.

(1) Let Vect,(B) denote the set of isomorphism classes of n-dimensional
real vector bundles over B. Prove that Vect;(B) forms a group under
tensor product.

(2) Suppose £ is a 1-dimensional real vector bundle over B. Prove that
¢ is trivial if and only if wy(§) is trivial.

(3) Prove that Vect;(B) = H'(B;7Z/27) as groups.

(4) Does (2) hold for n > 1 dimensional real vector bundles? Justify
your answer.

Solution. (1) The group structure

e the product is £ - n = £ ® n, it is associative and commutative,
by the associativity and commutativity (up to an isomorphism)
of tensor product on each fiber.

o the zero element is ek, since £ ® ek, = £ for any &.
o the inverse of £ is £V = Hom(¢, €k), by the pairing.
(2) “=" is obvious. For “<" see (3).
(3) The map ¢ : Vecty(B) — HY(B;Z/27),¢ — wi(€) is a group ho-

momorphism since wi(§ ® n) = wi(§) + wi(n) (7-C in [MS], proven
using universal bundle). Consider the universal bundle,
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§) —— fFE(W') —— E(v')

\l |

B4>]P>°°

we have
[B,P*] % Vect,(B) & HY(B; Z/22)

where ¥([f]) = f*(71), ©(€) = w1 (€), and the composition is
1= () = o (fF (7)) = frun(y?).

The map 1 is bijective by the 2 properties of universal bundle. The
composition is bijective, for w(y!) is a generator of H(P>,Z/27),
and the isomorphism [B, K(G,1)] = HY(B;G) for G = Z/2Z,since
P> = K(Z/2Z,1).

Thus ¢ : Vecty(B) = HY(B;7Z/27), the injectivity implies (2).

(4) No, consider P° and its tangent bundle, since w;(P°%) = 0, w3(P°) =
a® # 0, it must be non-trivial.
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6. Algebraic topology 2: HW6

Problem 1.(6-B in [MS]) Show that the restriction homomorphism
i HP (G (R®)) — HP(Gn(R™))
is an isomorphism for p < k, any coefficient group may be used.

Solution. For 7 < k, the number of r-cells in G,,(R""*) is exactly the
number of partitions of r into at most n integers, it remains the same for
G,(R*®). Thus i : G,(R"™*) — G, (R*) restricts to an homeomorphism
on the k-skeleton, according to cellular cohomology, i* : H?(G,(R*)) —
H?(G,(R™*)) must be an isomorphism for p < k.

Problem 2.(6-C in [MS]) Show that the correspondence f : X — R'@ X
defines an embedding of the Grassmann manifold G,,(R™) into G, 1 (R'&®
R™) = Gpo 1 (R™1), and that f is covered by a bundle map

81 D ,yn(Rm) N ,)/n—l—l(RrrH—l).

Show that f carries the r-cell of G, (R™) which corresponds to a given
partition ¢ - - - i, of  onto the r-cell of GnH(Rm“) which corresponds to
the same partition 27 - - - 7.

Solution. Consider the Stiefel manifolds

(Rm)n f | (Rerl)nJrl

AN A

V,(R™) —L s v (R

G (R™) —L s G (R

f naturally gives an embedding f : (R™)" — (R™1)"+1 and it restricts
to an embedding f : V,,(R™) C (R™)" — V,. 1 (R™) c (R f s
the induced map of f via quotient, so is also an embedding.

Define F : e! @ 4" (R™) — 4" (R™*1) by

(L, (a,u)) = (R*® L, (a,u)),a € R,u € L C R™
then F' gives an isomorphism on each fiber, and from definition, mo F' =

f o p, so the following diagram commute, thus F' is a bundle map.
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51 @’Y”(Rm) F ; ,YnJrl(Rerl)

pl lﬂ
G, (R™) —L & G, (R

As for the r-cells, suppose an r-cell of G, (R™) corresponding to a par-
tition 4 ---is is given by Schubert symbol ¢ = (oy---0,), with r =
op—14---+0,—n,and o0y — 1,---0, —n the same as 71, --- ,75 up to
a cancellation of zeros. Then f maps the cell to a cell given by Schubert

symbol ¢’ = (o] --- 0}, ,), where

/ / !/

Note 0y =1 =0,0y -2 =01 —-1,--- 0,1, —(n+1) =0, —n, soit
corresponds to the same partition 7; - - - i, and is an r-cell of G,, 1 (R™*1).

Problem 3.(6-D in [MS]) Show that the number of distinct Stiefel-
Whitney numbers for an n-dimensional manifold is equal to p(n).

Solution. The required number is the number of (ry---r,) with 1.7 +

o4+ n-r, =nand r; > 0. Let s1 = r,,8 = 1y + 711, , S, =
rn4 - +ry, then 0 < s <+ <s,and sy +---+ s, =n, which means
(s1---sy) is a partition of n. Conversely, given a partition (s ---s,), let
Tn = S1,Tp—1 = S9—S1,*** , T = S—Sp—1, then 1-r;+---4+n-r, =n. Thus

the required number equals the number of partitions of n, i.e. p(n).

Problem 4.(7-A in [MS]) Indentify explicitly the cocycle in C"(G,,) =
H"(G,) which corresponds to the Stiefel-Whitney class w,(y").

Solution. According to Problem 1., we have C"(G,) =& H"(G,) =
H"(G,(R"*1)). And using Problem 2., we can map the r-cell of
G1(R™2) = P! to a r-cell of G,(R™*1). Since the partition of r for
w,(P™™1) should be (1---1), (for (0---1) with O+ ---+ 1.7 = r gives
partition (1,--- 1) via Problem 3.), that is the same as the partition
of r corresponding to w,(7"). As a result,

(Rn—l@)*
N

f : CT(GH) ~ HT(Gn) ~ HT(GH(Rn—i—r—i—l)) Hr(]P)r—i—l)

satisfies f*w,(P"*) = w,(G,), In other word, the cocycle in C"(G,,) is
the inverse image of the r-cell of P+,
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Problem 5. Consider a vector bundle ¢ over a paracompact base B.
We have R” — E 5 B. Let F(E) denote the space of frames in E:

F(E):={(b,L,---,Ly,)| L’s are linearly independent lines in F}}.
Let f: F(E) — B denote the natural projection. Prove that
(1) f*¢ is isomorphic to a Whitney sum of 1-dimensional sub-bundles.

(2) f induce an injective map on cohomology with Z /27 coefficients.
Solution. (1) The map F: F*E(§) — E() is given by

| .

[*E(€) —— E()
F(E)y —1— B

(b,Ly-++ , Ly,v) — (b,v), where v € F. Now write (uniquely) v =
U1+t Up, U € Li7 then J (b,Ll,"' ,Ln,UZ’) > (b,Ll,"' ,Ln)
gives a 1-dimensional sub-bundle n; of f*FE(¢) for each i. Also we
have f*E(§) =m @ -+ @® 1.

(2) We prove this result by induction for
F(E)g:={(b,Lq,---, L) | L;i’s are linearly independent lines}

where 1 < k < n. For k =1, P" — F(E); — B is a fiber bundle,
and the canonical line bundle L over F(FE);, given by (b, L,v) >
(b, L),v € L, restricts naturally to the canonical line bundle L' over
Pl Note that L' € Vect;(P") = H(P";Z/27) is a generator of
H*(P",Z/2Z), so H*(F(E)y; Z/2Z) — H*(P", Z/27,).

Thus we use Leray-Hirsch theorem, which tells H*(F(F)1;Z/27Z) is a
free module over H*(B;7Z/27), or equivalently, i : H*(B;Z/27) —
H*(F(F)1;7/27) is injective.

If the result holds for 1 < k& < n — 1, then the map similar to
Problem 2. gives a fibration P" — F(FE).1 — F(E), so apply the
procedure above, we get an injective map i, : H*(F(E)y; Z/27) —
H*(F(E)ky1;2)27).

Finally ¢} 0---4] : H*(B;Z/2Z) — H*(F(E)p4+1; Z/27) is injective.
So by induction, the result holds for 1 < k < n.
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Problem 6. Suppose £ and 7 are vector bundles over B of dimension
m,n. Express wi(§ ® n) and wy(§ ® n) in terms of the Stiefel-Whitney
classes of &, 1, and prove your claims.

Solution. wi(§ © 1) = nwi(€) + muwn(n), ws(€ ® n) = "gTwn(€) +
Ly (n)? + mawn(€) + miwa(n) + (mn — Lwy(€)wi(n).

The general result is 7-C in [MS], which states

w(€" @n") = Pman(wi(€), - s wm (&), wi(n), -, wa(n)),

where pomn(om, s om, 01, oy) = [ TLA + 6+ 1),

(For ws, consider the degree 2 terms in H [I;(1 + ¢ +¢;), which is a
sum of 2mn(mn — 1) monomials, and can be written as n 1)(275 )2 +
D (544)? + nEieptity + mEqtht; + (mn — 1)(St) (t;), by counting
occurence)

Now we prove the general result.

First consider the line bundle case, i.e. m = n = 1. Let v be the
canonical line bundle of P>, py, ps projections from P> x P> — P> and
o P x P — P> a map

PiY @ pyy ———

| |

P> x P £y P
with the diagram commuting. Then we can write p*wi(y) = wi(piy ®
p5y) = apjwi(y) + bpswi () according to Kiinneth formula. Note that

for a permutation o # id € S?, po o also satisfies the properties of i, so
by the homotopy property of universal bundle, oo ~ u. As a result,

apywi(y) +bprwi(y) = (po o) wi(v)
= prwi(y) = aprwi(y) + bpywi (7),
which means a = b € Z/27Z. Now let f; : B — P> with

E— n——m—79
l f1 l l f2 \L
B ——— P> B —— P

then

(f1, f2) 1y = (f1, f2)" (P17 ® pyY)
(p1o (f1, f2))" v ® (P20 (f1, f2))"™y

= f{7® fsy=§6®n

||2
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Thus wy (L1 ® Ls) = (f1, fo)*pu*w1(y). Because in general wy (L1 ® L) # 0,
so a,b # 0 above, i.e. a = b= 1. In return,

wi(Ly @ La) = (f1, [2)" w1 (7)
= (f1, f2)"(p1wr(v) + powi(7))
= (p1 o (f1, f2))"wi(y) + (p2 o (f1, f2)) wi(7)
= fiwi(y) + fwi(y) = wi(§) +wi(n).

For general cases, using splitting principle, there is a paracompact space
Y and a map f :Y — B, suth that

« [FEELGD D&y
o [*:H*(B;Z/27) — H*(Y;Z/27) is injective.
Again, there is a paracompact space X and a map g : X — Y such that
g fN=me B
e g HY(Y;Z/27Z) — H*(X;Z/27) is injective.
Let & = g°€), then ¢ f*€ = & @ --- @ &, and

g /(€ ®@n) = (@) © (;n;),

as a result
w(g' (€ @n) = w((®:i&) @ (1))
- H H w(& @ n;
i
= H H(l +wi (&) + wl(nj))
J
Write the last term as q(4;,t}) = pmn(0i,07), ti = wi(&),t; = wi(n;),

since it remains the same after permutations oft or of t’ By construction
of Stiefel-Whitney class, o; = g* f*w;(§), 0} = g*f*wj(n), SO
g ffw ®@n) = punlo, U;')
= P9 [ wi(€), 9" fTw;(n))
- g*f*pmm(o-i; O_;)

But g*f* is injective, so w(§ ® 1) = pmn(0i, 07).
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7. Algebraic topology 2: HW7

Problem 1. We can similarly define the Euler class €(§) € H"(B;Z/27)
for any vector bundle &, regardless if ¢ is orientable or not.

(1) Prove that &(+{) is nonzero.
(2) Prove that (1) is nonzero.
(8) Prove that €(§) = wy(£) for any line bundle £.

Solution. Similar to Z-case, the Euler class €({) should be defined via
H"(B;Z/2) = H"(E;Z/2) {- H"(E,EyZ/2) — H"(F,Fy,Z/2)

€ > ulp < U > up # 0

o —1U

where u is the Thom class, i.e. H*(E;Z/27) — H*™"(E, Ey; Z/27).
For (1)(2), where £ is non-trivial, ¢ : HY(B; Z/27) = H*(E, Ey; Z/2),

T pir — u,

gives €(€) = ¢ '(u — wu). Here u — u # 0, since it is the image of
u|g # 0 under o — w.
For (3), consider

E=f"m1——m

| |

B—1 . pw

Since H(IP>®; Z/27) = Z/27w: (1) and &(y1) # 0, we must have €(~y;) =
wi(7), thus wy(§) = frwi(n) = fre(n) =&().

Problem 2. Prove that an oriented rank 2 vector bundle over a para-
compact B is trivial if and only if it has a non-vanishing section.

Solution. “=" is obvious. As for “<" if £? has a non-vanishing section,
then we can write £ = eb @ n'. Since ¢ is orientable, w;(n) = wy(£) = 0,
thus 7 must be a trivial line bundle, as a result, £ is a trivial bundle.

Problem 3. Consider a homogeneous polynomial f(zg,x1,z2) of degree
d. Let X = {f = 0}. Such an X is called an algebraic curve of degree d.
Let H be the subspace of CP? defined by xo = 0.
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(1) Assume that f is non-singular and hence X is a smooth manifold
with a fundamental class [X] € Hy(CP?;Z), prove that [X] = d[H].

(2) Prove that if two algebraic curves X and Y of degree d and d’ intersect
transversely, then they intersect at dd’ many points.

Solution. (1) We show first that X and H intersect at d points. Pluging
in 79 = 0, and divide both sides by z{ or 24, we transfer f = 0 into
a polynomial F' = agy? + - - + ag, where y = x1 /9 or z9/7; (take a
suitable one). Over C, F' must have d zeros, these correspond to the
intersection of X and H. For X in generic position, it is transverse.
Since H = CP! c CP?, PD[H] € H*(CP?) is a generator. So [X] x*
[H] = [X N H| = d[pt] tells that [X] = d[H].

(2) For non-singular curves, uing (1), [XNY] = [X]x[Y] = dd'[H]|x[H] =
dd'[pt], i.e. there are dd’ many points.
Remark. For general algebraic curves, we shall recall the Bézout
theorem, which states that if f, ¢ have no common factors (X =

{f=0},Y ={g=0}), then
dd =Y I(P,XNY).
P

In transverse case, [(P,X NY) =1 forevery P€ X NY.

This theorem can be proved (algebraically) by considering for large
p, the dimension of degree p part dim(Clxg, x1, z2]/(f, g))p, which is
equivalent to the right hand side, and equals dd’ in this case.

Problem 4. Let M be a manifold. Write down the definition for M to
be orientable in AT1. Now assume that M is also a smooth manifold.
Write down a definition for the tangent bundle of M to be orientable.
Check that a smooth manifold M is an orientable manifold if and only
if its tangent bundle is an orientable bundle.

Solution. In AT1, M is orientable if there is an oriented atalas {U,},
i.e. the transition function ¢,z fixes H"(M|p) for any «, 5,p € U, N Us.
The tangent bundle is orientable if A" T'M has a non-vanishing section.
Now we check the equivalence. Consider the de Rham cohomology, for
x € U,, and w € A"T" M, we can take f, which takes value 1 near x and
vanishes outside U,. Then f,w is a generator of Hjp (U,) = H"(M|z).
Conversely, for compatible generators w, of Hjp (Us) = H"(M|z), we
can take a partition of unity subordinate to {U,} to get a global form
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w. In conclusion, the existence of a section of A"I'M is equivalent to
the existence of a global top form w, which is equivalent to a compatible
choice of generators of each H"(M|z).

Problem 5. The natural inclusion R"*' C C"*! induces a map f :
RP" — CP" given by [xg : -+ : ] — [xg : -+ : z,]. Compute the
induced map f* on the cohomology ring with Z/2Z coefficients.

Solution. Recall that H*(CP"; Z/27) = Z/2Z[a]/(a™™),deg a = 2, and
H*(RP"; Z/27) = 7./27Z[3]/(8"*1), deg 8 = 1. So the point is to compute
fra € HX(RP; Z/27).

For n =1, obv1ously, ffa=0. For n > 2, take a € H*(CP";Z/2) with
[H] = PD"Y(a), and X C RP" with [X] € Hg(RIP’” 7)2).
),

([T, [X]) = (a, [f(X)]) = (PD[H] — PD(f(X)), [CP"])
= (PD[H h f(X)],[CP"]).

Note that H M f(X) = f(RP!) ~ pt C CP" (e.g. H = {2z, o =0}, X =
{rg=- =2, 3=0L,HMf(X)={[0:---: ka: kb]la,b € R}), since
71 (CP") = 0, thus (f*a, [X]) = 1. In conclusion, f*:Z/2Z[a]/(a") —
Z/2Z[3*)/(B™) € Z/2Z[B)/ (B").

Problem 6. Let V;(C") denote the Stiefel manifold consisting of se-
quences of orthonormal vectors (vq,--- ,v;) in C".

(1) Find the largest i such that V;(C") is i-connected.
(2) Compute the first nontrivial homotopy group m;1(V;(C™)).
Solution. For k = n, V,(C") = U(n), m(U,) = Z. So consider k < n.
(1) Vi(C") = 5U(n)/SU(n — k),
— Tn(SU(n — k) = m1,(SU(n)) = 7 (Ve(C")) —
and S*"~1 =2 SU(n)/SU(n — 1),
— T (SU(n — 1)) = 7,(SU(n)) = 7, (S —

thus for m < 2(n — 1), 1,(SU(n — 1)) = m,,(SU(n)), and for m =
2(n — 1), 71 (SU(n — 1)) — m,(SU(n)) is surjective. So for m <
2(n — k), m1n(SU(n — k)) = 7,,(SU(n)), and for m = 2(n — k),

Tm(SU(n — k) = m,(SU(n)) = 7 (Ve (C)).

In conclusion, 7,(Vx(C")) = 0 for m < 2(n — k). The result is
i = 2(n — k), since in (2) we shall prove my(,_py4+1(Vx(C")) = Z.
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(2) Recall that H*(SU(n)) = A(ag, as, - ,a,—1), SO
Nag, as, -+ azp-1) = Nag, as, -+, ag(n—p)-1) ® H*(Vi(C")),

since there is no monodromy. From this, H?"%+2(1,(C")) = 0,
HY=R+L(V, (C")) = Z, using
0 — Exty(H™(X),Z) — H,(X) — Homz(HY(X),Z) — 0,

(X
We get Hy(,—py+1(Vi(C")) = Z. Now use Hurewicz theorem, we have
(nfk)+1(vk((c ) = Z.
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8. Algebraic topology 2: HWS

Problem 1. Let vV be the dual of the cannonical bundle over Gy(C*),
1= {W € Go(C*) |C*NW # 0}, 01 the Poincaré dual of ¥;.

(1) Prove that c;(A*yY) = o71.
(2) Prove that ¢i(v") = 0.

Solution. (1) For any linearly independent f,g € Homc(C* C), s :
W = flw Aglw = flw ®glw — glw ® flw is a section of A%yY.
Note that ker f Nker g = C?, 1 < dim W Nker f < 2, similar for g.

e if dimW Nkerf =2 or dimW Nkerg = 2, then W C ker f or
dim W C ker g, either way, s(W) = 0;

o if dmW Nker f =dimW Nkerg =1, take u % 0 € W Nker f
and v # 0 € W Nkerg.

—if w,v are linearly dependent, or equivalently, W N ker f N
kerg # 0, take w L wu, then s(W)(kju + lw, kou + lyw) =
0+ Lilos(W)(w,w) =0, i.e. s(W) = 0;
— if u, v are linearly independent, or equivalently W N ker f N
ker g = 0, then s(W)(u,v) =0 — f(v)g(u) # 0.
In conclusion, s(W) = 0 if and only if W Nker f Nkerg # 0, thus
Zs={W|s(w) =0} ={W |Wnker fNkerg # 0} = X;.
Thus ¢;(A*YY) = e(A*yY) = PD([Zy]) = o1.
(2) Using splitting principle, we may assume " splits into a sum £ @& n
of line bundles (for more details, see Problem 2.)
L+ (A?yY) = c(A*Y) = c(§ @)
=1+ 61(5) + 61(77) =1+ Cl(”)/v).
Thus ¢1(7Y) = e1(A*YY) = 1.
Problem 2. Suppose w is a 2-dimensional complex vector bundle. Com-

pute the Chern classes of the third symmetric power Sym®w in terms of
Chern classes of w.

Solution. Using splitting principle, there is a bundle f : ' = ¢1dn! — w
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such that f*: H*(B(w);Z) — H*(B(W');Z) is injective. Then

c(Sym’w') = ¢(Sym®(£ ® n))
= c(£) - (€ @n) - (€ @1F?) - c(n®)
= (1+3c1(§)) - (1 +2¢1(&) + e1(n))

(14 ca(§) +2e1(n)) - (1 + 3er(n))
(with wolframalpha) = 45C2d2 + 1803d + 18Cd3

+6¢° + 6d° + 48¢*d + 48cd”
+11¢° 4 11d* + 32¢d + 6¢ + 6d 4 1
— 45¢3 + 18¢y(c3 — 2¢p) + 61 (2 — 3ep)
+ 48c1co + 11(c2 — 2¢9) + 32¢5 + 6¢1 + 1
= (9¢3 + 18cfcy) + (6¢ + 30c;cy)
+ (11¢% + 10¢y) + 6y + 1.
where ¢ = ¢1(§),d = c1(n),c1 = a1(W'), ca = co(w’). Since f* is injective,
for w, similarly, we have
¢(Sym*w) = (9c2(w)? + 18¢1(w)?ca(w)) + (6e1(w)? + 30¢; (w)ea(w))
+ (11cp(w)? + 10c(w)) + 61 (w) + 1.

Problem 3. Consider complex vector bundles over a paracompact B.

(1) Let Vect,(B) be the set of isomorphism classes of n-dimensional
complex vector bundles over B. Prove that Vect;(B) forms a group
under tensor product.

(2) Suppose w is a 1-dimensional complex vector bundle over B. Prove
that w is trivial if and only if ¢;(w) is trivial.

(3) Prove that Vect;(B) = H*(B;Z) as groups.
Solution. (1) The group structure

e the product is £ - n = £ ®¢ n, it is associative and commutative,
by the associativity and commutativity (up to an isomorphism)
of tensor product on each fiber.

e the zero element is ef, since £ ®c e = £ for any &.

o the inverse of £ is £V = Homc(&, ¢), by the pairing.

(2) “=-"is obvious. For “<" see (3).
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(3) The map ¢ : Vect;(B) — H?*(B;Z),& — c1(€) is a group homo-
morphism, since ¢;(§ ®@c ) = ¢1(€) + ¢1(n). Consider the universal
bundle,

\l l
— CP*>

we have

[B,CP*] % Vect,(B) % H(B;Z)
where ¥([f]) = f*(41), (&) = c1(€), and the composition is

1= () = alf (")) = Fraih).

The map v is bijective by the 2 properties of universal bundle. The

composition is bijective, for ci(y!) is a generator of H?(CP>;Z),

and the isomorphism [B; K(G,2)] & H*(B;G) for G = Z, since

CP* = K(Z,2).

Thus ¢ : Vecty(B) & H?(B;Z), the injectivity implies (2).
Problem 4. Let UT'(X,) be the total space of the unit tangent bundle

over a closed oriented surface of genus g. Compute the cohomology
groups of UT'(X,).

Solution. Fiber bundle: S! & X = urs., 5 >,. Recall the Gysin
sequence, we have the following long exact sequence

= HY(S,) = HY(X) = HH(Z,) =5 H"Y(Zy) — -
Z,1=0,2
where e is th Euler class of 3. Recall also H(X,) = ¢ Z*,i=1 ,so
0,2 >3

0+7Z - HX)»0+7Z%+ HY(X)
1
Z
\Love
7

1

HX(X) > 7% 50> HYX)>Z >0
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Here that e — e amounts to the multiplication by x(3,) = 2 — 2g. Thus

| 7 i=03
H'(X) = { 72041 i _ 19 for g =1, and

Z ,i=0,3
H(X)={ 7% =1,
7Y D7) (2 —29)7 i=2

for g # 1.
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9. Algebraic topology 2: HW9

Problem 1. Consider ¢ := (v})* denote the orthogonal complement of
the canonical line bundle ! over RP".

(1) Fix uy € RP". Check that the map s(u) = up — (up - u)u defines
a section of the vector bundle ¢ which is non-zero on the (n — 1)-
skeleton of RP".

(2) The section s for the bundle R"\{0} — Ey — RP" which is £ re-
moving zero defines an obstruction cocycle ob(s) : C,(RP") = Z —
-1 (R™\{0}) = Z. Prove that ob(s) is an isomorphism.

(3) Conclude that the primary obstruction to the bundle R"\{0} —
Ey — RP" is non-zero in H"(RP"; Z/27).

(4) Combining the lecture on Tuesday 4/22 and what you have done in
this problem, convince yourself that the first obstruction to a non-
zero section of 4" over G, modulo 2 is equal to w,(7"). Convince
yourself that a similar argument works for w;(y") as well.

Solution. (1) s is first defined on S”, and satisfies s(—u) = s(u), also,
u-s(u) =u-uy—u- (ug-u)u =0, so the image lies in £. Note that
s(u) = 0 only for u = Fug, so s is non-vanishing on the great circle
perpendicular to ug, which correspond to the (n — 1)-skeleton.

(2) Consider the following diagram,

" E » Fy
A P
0" Ey : > Fy J s
A \\\l/ /"\ //
o's| l D" ‘Pl <~— RP"
\\ / /l (/{
gnt F s RP*!

which gives S"1 — D" 2% ®*E, = D" x (R"\{0}) — R™\{0}.
Under this map, n-cell ® of RP" corresponds to id : S"~! — R"\{0},
which gives a generator of 7, 1(R"\{0}). Thus 0b(s) is isomorphic.
(see the picture on [MS, page 142], the rotation around S™~!, which
leaves the vector field invariant, generates m, _1(S"1))

(8) As in (2), ob(s)(®) = [id] € m,_1(R™\{0}). Note that around ug the
vector field points towards wug, so the section can not be extended to

up continuously. Hence ob(s) # 0 € H"(RP"; Z/2Z).
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(4) (not required)[VBKT, page 104].

Problem 2. Let FF — E — B be a fiber bundle where B is a CW
complex of dimension n. Prove that if ' is (n — 1)-connected, then the
bundle always has a section. Prove that if I’ is (n — 2)-connected, the
bundle has a section if and only if its first obstruction is zero.

Solution. For F' being (k — 1)-connected, from obstruction theory, we
can build a section inductively from sy on B° (which exists trivially), to
a section s; on B, and s; can be extended to s,y on B*! if and only
if ob(s;) = 0 for the first obstruction class ob(s;) € H*™(B; 1 (F)).
Take £k = n and B = B", there exists a section on B; take k =n —1 and
B = B", if ob(s,-1) = 0, then there is a section on B, conversely, using
obstruction theory for a section s on B, we must have ob(s) = 0.

Problem 3. Use obstruction theory to prove that a smooth compact
manifold admits a non-vanishing vector field if y(M) = 0. This is the
converse to the Poincaré-Hopf theorem.

Solution. If M is orientable, from obstruction theory, the first obstruc-
tion of the bundle S"~1 — Vi(T'M) — M is the Euler class e € H"(M;Z).
If x(M) = 0, then e = 0, and we can construct a section on M induc-
tively. Similarly, if M is non-orientable, we can consider the Z/27 Fuler
class, which is the first obstruction, and is also zero when y(M) = 0

([Steenrod, §39]).

Problem 4. Prove that any complex vector bundle over S' must be
trivial.

Solution. For any C"-bundle ¢ over S! | consider the bundle U(n) =
Vo(CY) — Vi () — St The obstruction for a section on pt € St to
extend to St is ¢1(S') = 0 € H?(SY;Z) = 0, so such a section exists. As
a result, & has n linearly independent sections, i.e. is trivial.

Problem 5. Prove that Diffeo™ (S?), the group of orientation-preserving
diffeomorphisms of S, deformation retracts onto the subgroup U(1).

Solution. Let Diffeog (S!) be the subgroup of Diffeo” (S1) with 0 € S =
R/Z fixed, then obviously, we have

Diffeo™ (S') = Diffeog (S1)U(1).

We only have to show that Diffeog (S!) is contractible. For any element
f € Diffeog (S1), it lifts to
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R R

Lo

f:R — R, with ]E(sc+ 1) = f(:v) +d,d € Z, and f(O) =0 . Since [ is a
diffeomorphism, f should be a homotopy equivalence, so d = +1. For f
to be orientation-preserving, d must be 1. In this case,

H(z,t) = to + (1 — 1) f(z)
gives a homotopy between fand idg1, thus Diffeog (S1) retracts to idgn.

Problem 6. Prove that the topological join of an n-connected space and
an m-connected space is (n + m + 2)-connected.

Solution. The topological join of M, N is given by
M+« N=MxN x[0,1]/ ~

where (a, b1,0) ~ (a, by, 0), (a1,b,0) ~ (az,b,0). We write A = M x N =
{1—t)a+tb|a € M,be N} for simplicity.
There is an isomorphism (see G. Whitehead’s paper or J. Milnor’s paper)

Hpo(M+N)= Y H(M)® Hi(N)& Y Tory(H(M), H;(B)).
i+ji=k iti=k—1

From Hurewicz’s theorem, T inio(A) = Heminio(A) = 0, ie. A is
(m 4+ n + 2)-connected.
Here is a sketch of proof (from Milnor’s). There is a MV sequence

— Hyn (M« N) = Hy(M N N) S H, (M) @ H(N) S Hy(M + N) —

where M = {a€A|t\ s} N ={acAlt >3} and thus M NN =
M x N,M ~ M, N~ N. Sincei; : M = M=+ N and is : N = M *« N
are null-homotopic (taking ¢ = 1,0 respectively), ¢ must be trivial.

0 — Hyy (M x N) — Hy(M x N) 5 Hy(M) @ Hy(N) — 0

Now we get the required formula from the above (splitting) exact se-
quence and Kiinneth formula.
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10. Algebraic topology 2: HW10
Problem 1. Compute the total Stiefel-Whitney class of the tangent
bundle of CIP".

Solution. Recall that the total Chern class of CP" is (1 + a)"™!, where
a € H*(CP";Z) is a generator, and also that the coefficient homomor-
phism

H*(CP",Z) — H*(CP";Z/27)

sends ¢(CP") to w(CP"). Thus the total Stiefel-Whitney class is (1 +
o)™ where o € H?(CP";Z/27) is a generator.

Problem 2. Compute the total Pontrjagin class of the tangent bundles
of ™ and CP".

Solution. (1) For S”, since T'S" & €4, = 575‘151, p(S") = p(gg;fl) = 0.
(2) For CP", we have
l—p1+-+(=1)"p, = c(CP") - ¢(CP")

— (1 . a2)n+1

where a € H?*(CP") is a generator. Thus the total Pontrjagin class

is (1 + a?)"1,
Problem 3. (Stiefel-Whitney v.s. Pontrjagin classes) Prove that

wy;(€) = pi(§) mod 2
in HY(B;Z/27) for each i.
Solution. The coefficient homomorphism
f:H(B;Z) — H*(B;Z/27)

sends ¢(&) to w(§). And since

i

pi(§) = (_1)iZ(_1)jcj(£)62i—j(£) = c*(¢) mod 2
so f(pi(§)) = f(ci(§)) = wi(§).

Problem 4. Prove that if a smooth oriented closed manifold M*" is the
boundary of an oriented compact manifold V4! then all Pontrjagin
numbers of M are zero.
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Solution. Note that TV|y = TM & €}, so for any Pontrjagin class
pr(M), we have from product formula that pp(M) = *pp(V).

- HW) S H(M) S HYY(V, M)
So from the exact-ness above, dp,(M) = 0. Thus

(pi,(M) - - pi, (M), [M]) = (ps, (M) - - - pi, (M), 0]V])
= (0(pi, (M) - - p;, (M), [V]) = 0
which means all the Pontrjagin numbers are zero.

Problem 5. Prove that

H*(Gr(R*); Q) = Qlp1, -+ , pi/2)-
Solution. Recall that

A ooy, oy QP Pya)] ,k odd,
H*(Gr(R™);Q) = { Qlpy, - -- 7pk:/2>6]/(pk/2 . €2> k even
and that G(R™) is the oriented two-cover of Gj(R®). According to
[Hatcher, §3.G], the map H*(Gx(R®);Q) — H*(Gr(R®): Q) induced
by covering is injective with image H*(G4(R™); Q)%Z/?Z. Note that the
Euler class depends on the orientation, while p; does not. So we have
H*(Gr(R>); Q) = H*(Gr(R®); Q)%/*%2 = Q[p1, - , ppesa)].
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11.  Algebraic topology 2: HW11

Problem 1. For the following statement below, write down a lifting
problem that is equivalent to each of the statement below. For example,
a real vector bundle £ over B is orientable if and only if its classifying
map B — BO(n) lifts to a map B — BSO(n). Draw a commutative
diagram for each lifting problem that you write down.

(1) a real vector bundle ¢ is a sum of line bundles iff...

(2) a real vector bundle £" = n* @ p"* iff...

(8) a real vector bundle ¢ has a non-vanishing section iff...

(4) a real vector bundle ¢ has k& nowhere dependent sections iff...

(5) a real vector bundle ¢*" has a complex structure iff...

Solution. (1) its classifying map B — BO(n) lifts to B — B(O(1)®");
(2) its classifying map B — BO(n) lifts to B — B(O(k) x O(n — k));
(8) its classifying map B — BO(n) lifts to B — BO(n — 1);

(4) its classifying map B — BO(n) lifts to B — BO(n — k));

(5) its classifying map B — BO(2n) lifts to B — BU(n).

Problem 2. Show that a real 2-dimensional vector bundle ¢ has a
complex structure if and only if wq(§) = 0.

Solution. wy(§) = 0 if and only if £ is orientable, which is equivalent to
the condition that B — BO(2) lifts to BSO(2) = BU(1), which happens
if and only if £ has a complex structure, from (5) in Problem 1..

Problem 3. The isomorphism C"*™ = C"™ & C™ induces a map of Lie
groups U, x U,, — U,.+y, which further induces a map of classifying

spaces:
¢ B(U, x Up,) — BUpyp.

Compute the induced map
¢* : H'(BUpym; Z) — H*(BU,, x BU,,;Z).

Solution. Recall that H*(BU (k);Z) = Z|cy, - - - , ck], where ¢; is the i-th
Chern class of the universal bundle. Note that
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n-+m

> Tc

\ l |

) x BU(m) —%— BU(n +m)

1P

Using the Whitney sum formula,
¢*(c(g™)) = c(re @) = cre) - c(re),

or equivalently, ¢*cy(7¢™) = Y (@) - ¢; (7).
i+j=k
Problem 4. Consider the determinant map det : U,, — U;, compute the

induced map
H*(BU;Z) — H*(BU,;Z).

Solution. Suppose det : U(n) — U(1) induces ¢ : BU(n) — BU(1),

P*1E — ¢

\l |

L CP>

A"

then ¢*c;1(7¢) = c1(A"y%). Using splitting principle, we consider simply
the case 7¢ = @&, where ci(A"g) = a(®:i&) = > al&) = alte)-
Hence ¢*c1(v¢) = c1(72), or equivalently, ¢* : Z[ei(v¢)] = Zler (V2]

Problem 5. Consider the map f : U; — U, given by A — I, describe
the induced map

Bf*: H(BU,;Z) — H*(BU}; 7).
Solution. Suppose f : U(l) — U(n) induces ¢ : BU(1) — BU(n),
(¢

* M ;,YC

\l |

CP® —2 5 G, (R™)

then ¢*c(7%) = (c(7¢))" = (1 + e1(72))", or equivalently we have ¢*
Zle(ve)]) =2 Z[(F)er(re)] -
Problem 6. Consider a smooth orientable circle bundle S - E — B

over a CW complex B. Prove that this bundle is trivial if it has a
continuous section.
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Solution. “=" is obvious. For “<=", consider the correspondence

principal bundle orientable S'-bundle
. 1 —
Diff"(S') - P — B F—E—B

which is given by P — B = P Xpygt (g1 S! — B. Recall in HW 9.
that Diff"(S') ~ U(1) = S'. Thus E = P Xy S' = P, (in general,
P x¢(G/H) = P/H), which means we can regard £ — B as a principal
U(1) bundle up to a homotopy equivalence.

Recall that any principal bundle is trivial if and only if it has a continuous
section, thus £ — B is trivial in this case.
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