

Riemannian geometry: a note for reviewing

2024 autumn

This is a re-arranged note for the course on Riemannian geometry given by professor Yang, which aims for a quick reviewing of the basic computations and the main results. The gist lies in the exercises. Some good references are [Pet06, Jos08, DCFF92, Wal09]. Many related topics are to be appended in the future.

1	Basic concepts and computations	3
1.1	Connections and curvatures	3
1.2	Hessian and scalar Laplacian	4
1.3	Pull-back operation	5
1.4	The 2nd fundamental form	6
1.5	Parallel transports, geodesics and exponential maps	7
1.6	Completeness	10
1.7	Normal coordinates	11
1.8	Hodge star operator and Hodge decomposition	12
1.9	Tensor calculus	16
1.10	Miscellany	18
2	The Bochner technique	20
2.1	Killing vector fields	20
2.2	Harmonic 1-forms	22
2.3	Smooth maps	22
3	Jacobi fields	22
3.1	Variation formulae and Jacobi fields	22
3.2	Conjugate loci and cut loci	24
4	Curvature and topology	25
4.1	Spaces of non-positive sectional curvature	25
4.2	Spaces of negative sectional curvature	26
4.3	Spaces of non-negative curvature	27
4.4	Space forms	28
5	Comparison theorems of curvatures	30
5.1	Rauch comparison	30
5.2	Hessian and Laplacian comparisons	31
5.3	Volume comparison	32

5.4	The splitting theorem	33
6	Gathering important results	35
A	Isometry and local isometry	36
B	Covering maps and transformations	37
C	Axes, rays and lines	37

1. Basic concepts and computations

1.1. Connections and curvatures

Definition 1 (connection). $\nabla : TM \times E \rightarrow E$, which is linear on TM , a derivation for E , where $E \rightarrow M$ is a bundle.

Definition 2 (Christoffel symbol). $\nabla_{\frac{\partial}{\partial x^i}} e_A = \Gamma_{iA}^B e_B$.

Definition 3 (curvature tensor). $R : TM \otimes TM \otimes E \otimes \rightarrow E$,

$$R(X, Y)e := \nabla_X \nabla_Y e - \nabla_Y \nabla_X e - \nabla_{[X, Y]} e$$

As for a Riemannian manifold (M, g) , we consider usually Levi-Civita connection, and several special curvature tensors.

Definition 4 (Levi-Civita connection). $\nabla : TM \times TM \rightarrow TM$, a connection s.t.

- (1) $X(Y, Z) = (X\nabla_Y, Z) + (Y, \nabla_X Z)$;
- (2) $\nabla_X Y - \nabla_Y X = [X, Y]$.

Definition 5 (curvature tensors and operator).

- (1) $R(X, Y, Z, W) := (R(X, Y)Z, W)$, $R = R_{ijkl} dx^i \otimes dx^j \otimes dx^k \otimes dx^l$;
- (2) sectional curvature: $K_\sigma (= \sec(X, Y)) = \frac{R(X, Y, X, Y)}{|X \wedge Y|^2}$, $\sigma = \text{span}\{X, Y\}$;
- (3) Ricci curvature: $\text{Ric}_{ij} = g^{kl} R_{iklj}$;
- (4) Scalar curvature: $S = g^{ij} \text{Ric}_{ij}$.
- (5) curvature operator: $\mathfrak{R} : \wedge^2 TM \rightarrow \wedge^2 TM$, such that $g(\mathfrak{R}(X \wedge Y), Z \wedge W) = R(X, Y, Z, W)$.

List of properties:

- symmetry of R and first Bianchi;
- independence of basis for K_σ ;
- independence of planes for K_σ iff being flat;
- for 3-dim manifolds, CRC implies CSC.

Definition 6 (trace definition of Ricci). $\text{Ric}(v, w) = \text{tr}(x \mapsto R(x, v)w)$.
Taking an ONB of TM ,

- (1) $\text{Ric}(v) := \sum R(v, e_i) e_i$;

(2) $\text{Ric}(v, w) = g(\text{Ric}(v), w)$;

(3) for $v = e_1$, $\text{Ric}(v, v) = \sum R(v, e_i, e_i, v) = \sum_{i=2}^n \sec(v, e_i)$.

Exercise 7. (1) show the Koszul formula;

(2) calculate Γ_{ij}^k, R_{ijkl} ;

(3) show that $R_{ijkl} =$

$$\frac{1}{2} \left(\frac{\partial^2 g_{jl}}{\partial x^i \partial x^k} + \frac{\partial^2 g_{ik}}{\partial x^j \partial x^l} - \frac{\partial^2 g_{il}}{\partial x^j \partial x^k} - \frac{\partial^2 g_{jk}}{\partial x^i \partial x^l} \right) + g_{pq} (\Gamma_{ik}^p \Gamma_{jl}^q - \Gamma_{il}^q \Gamma_{kj}^p).$$

(4) compute the curvatures of S^n, H^2 ;

(5) compute the curvatures of

$$g_{ij} = \delta_{ij} + \frac{x^i x^j}{K^2 - \sum (x^i)^2}, K^2 - \sum (x^i)^2 > 0;$$

(6) compute the curvatures of $(\mathbb{R}^2, e^{a(x^2+y^2)}(dx \otimes dx + dy \otimes dy))$.

Exercise 8. (1) what's the relation of curvatures between g and $k \cdot g$;

(2) prove the integral formulae for Ric and S :

(a) for unit vector v , and S_v^\perp the set of unit vectors orthogonal to v ,

$$\text{Ric}_p(v, v) = \frac{n-1}{\text{Vol}(S^{n-2})} \int_{w \in S_v^\perp} \sec(v, w) dV_{\widehat{g}}.$$

(b) for $UT_p M \cong S^{n-1}$,

$$S_p = \frac{n}{\omega_{n-1}} \int_{S^{n-1}} \text{Ric}_p(v, v) dS.$$

(3) let (M^3, g) be Einstein, show that (M, g) is of CSC.

(4) (hard, warped product) consider (N^{n-1}, g_N) , $\text{Ric} = \frac{n-2}{n-1} \lambda g_N$, $\lambda < 0$, find a function $\rho : \mathbb{R} \rightarrow (0, \infty)$, such that $(M^n, g) = (\mathbb{R} \times N, dr^2 + \rho^2 g_N)$ becomes an Einstein metric with $\text{Ric} = \lambda g$.

1.2. Hessian and scalar Laplacian

Consider smooth function $f : (M, g) \rightarrow \mathbb{R}$.

Definition 9 (Hessian and scalar Laplacian).

(1) $\text{Hess } f := \nabla^2 f = \nabla d f$, i.e.

$$\text{Hess } f(X, Y) = g(\nabla_X \nabla f, Y) = (\nabla_X d f) = X Y f - \nabla_X Y f.$$

the Hessian operator is given by $\text{Hess } f(X, Y) = (\mathcal{H}_f(X), Y)$.

(2) $\Delta_g f := \text{tr } \text{Hess } f = g^{ij} \text{Hess } f_{ij}$.

Locally, $\text{Hess } f_{ij} = \text{Hess } f_{ji}$, thus $\text{Hess } f$ is a symmetric 2-form.

Theorem 10 (volume expression of the Laplacian).

$$\Delta_g f = \frac{1}{\sqrt{\det g}} \frac{\partial}{\partial x^i} \left(g^{ij} \sqrt{\det g} \frac{\partial f}{\partial x^j} \right)$$

Exercise 11. (1) for $d \text{Vol}_g = \sqrt{\det g} dx^1 \wedge \cdots \wedge dx^n$, compute $\frac{\partial \det g}{\partial x^i}$, $\frac{\partial \log \det g}{\partial x^i}$ and $\frac{\partial \sqrt{\det g}}{\partial x^i}$, show

$$\frac{\partial}{\partial x^i} d \text{Vol}_g = \frac{1}{2} \frac{\partial \log \det g}{\partial x^j} d \text{Vol}_g.$$

(2) prove Theorem 10.

(3) show that

$$\text{Hess } \varphi(f) = \varphi'' d f^2 + \varphi' \text{Hess } f.$$

1.3. Pull-back operation

$f : M \rightarrow N$ induces $f_* : TM \rightarrow f^* TN$, for immersion, $f^* TN \subset TN$.

$$\begin{array}{ccccc} TM & \xrightarrow{f_*} & f^* TN & \xrightarrow{\xi} & TN \\ & \searrow \pi' & \downarrow \hat{\pi} & & \downarrow \pi \\ & & M & \xrightarrow{f} & (N, h) \end{array}$$

Theorem 12 (definition of pull-back connection and metric). *There exists compatible pull-back connection and metric defined by*

$$(1) \widehat{\nabla}_{\frac{\partial}{\partial x^i}} \widehat{e}_A = f_* \left(\frac{\partial f^\alpha}{\partial x^i} \nabla_{\frac{\partial}{\partial y^\alpha}} e_A \right) = f_* \left(\frac{\partial f^\alpha}{\partial x^i} \Gamma_{\alpha A}^B(f) e_B \right);$$

$$(2) \widehat{g} = f^* h, \text{ i.e. } \widehat{g}(\widehat{e}_A, \widehat{e}_B) = h(e_A, e_B).$$

Locally, drop the hats,

$$\begin{aligned} \widehat{\nabla}_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial y^j} &= \frac{\partial f^\alpha}{\partial x^i} \Gamma_{\alpha A}^k(f) \frac{\partial}{\partial y^k}; \\ \widehat{g}_{ij} &= h \left(f_* \frac{\partial}{\partial x^i}, f_* \frac{\partial}{\partial x^j} \right) = \frac{\partial f^\alpha}{\partial x^i} \frac{\partial f^\beta}{\partial x^j} h_{\alpha\beta}. \end{aligned}$$

Exercise 13. (1) show the well-defined-ness and compatibility.

(2) show that $\widehat{R}_{ij\gamma\delta} = \frac{\partial f^\alpha}{\partial x^i} \frac{\partial f^\beta}{\partial x^j} R_{\alpha\beta\gamma\delta}$.

1.4. The 2nd fundamental form

The 2nd fundamental form, which generalize the Hessian, is defined to indicate the deviation under pull-back.

GENERAL CASE

Definition 14 (2nd fundamental form). $B \in \Gamma(M, T^*M \otimes T^*M \otimes f^*TN)$, $B(X, Y) := \widehat{\nabla}_X f_* Y - f_* \nabla_X Y$.

Locally, $B_{ij}^\alpha = B_{ji}^\alpha$, thus B is a symmetric (2,1)-tensor, as a result,

$$\widehat{\nabla}_X f_* Y - \widehat{\nabla}_Y f_* X = f_* \nabla_X Y - f_* \nabla_Y X = f_* [X, Y].$$

Exercise 15. (1) compute the local expression of B .

(2) $f : (M, g) \rightarrow (N, h)$, and $\widetilde{\nabla}$ is the affine connection on $T^*M \otimes f^*TN$ induced by ∇^M, ∇^N , then $B = \widetilde{\nabla} df$, where df is regarded as a smooth section in $\Gamma(M, T^*M \otimes f^*TN)$.

THE CASE OF RIEMANNIAN IMMERSION

Given an immersion $f : M \rightarrow (\overline{M}, \overline{g}, \overline{\nabla})$, $f^*T\overline{M} \subset T\overline{M} = f^*T\overline{M} \oplus T^\perp M$. We write $(\widehat{g}, \widehat{\nabla}), (g, \nabla)$ for the induced structures on f^*TN, TM .

List of properties:

- $g_{ij} = \frac{\partial f^\alpha}{\partial x^i} \frac{\partial f^\beta}{\partial x^j} \overline{g}_{\alpha\beta}$;
- $B \in \Gamma(M, T^*M \otimes T^*M \otimes T^\perp M)$, i.e. $\widehat{g}(B(X, Y), f_* Z) = 0$ for any $X, Y, Z \in \Gamma(M, TM)$. Equivalently (drop of push-forward),

$$\widehat{g}(\widehat{\nabla}_X f_* Y, f_* Z) = \widehat{g}(f_* \nabla_X Y, f_* Z) = g(\nabla_X Y, Z).$$

- (Gauss-Codazzi) for any $X, Y, Z, W \in \Gamma(M, TM)$,

$$R(X, Y, Z, W) - \overline{R}(X, Y, f_* Z, f_* W)$$

$$= \widehat{g}(B(X, W), B(Y, Z)) - \widehat{g}(B(X, Z), B(Y, W)).$$

Definition 16 (Weingarten map). $X, Y \in \Gamma(M, TM)$, $\eta \in \Gamma(M, T^\perp M)$, $g(W_\eta(X), Y) := B_\eta(X, Y) := g(B(X, Y), \eta)$.

Remark 17. Take $(\widehat{M}, \widehat{g}) = (\mathbb{R}^N, g_{\mathbb{R}^N})$, we shall get Gauss' Theorema Egregium, especially for the immersion of a surface into \mathbb{R}^3 .

Exercise 18. (1) show the orthogonal relation with(out) the rank theorem.

(2) consider immersion of a surface into \mathbb{R}^3 , with unit normal vector n , write the expression of first and second fundamental form, B_n , and Gauss' Theorema Egregium:

$$K = \frac{\det II}{\det I} = \sec(X, Y) = \frac{R(X, Y, Y, X)}{g_D(X, X)g_D(Y, Y) - g_D(X, Y)^2}.$$

(3) show that $\text{Ric } g_D = K g_D$, $S = 2K$.

(4) consider $S^n \rightarrow \mathbb{R}^{n+1}$ and the local parametrization

$$\gamma : D \rightarrow U_{n+1}^+ \subset \mathbb{R}^{n+1}, \gamma(u) = (u^1, \dots, u^n, \sqrt{1 - |u|^2})$$

where $D = \{u \mid |u| < 1\}$.

- (a) compute $g_D = \gamma^* g_{\text{can}}$;
- (b) compute the second fundamental form;
- (c) compute the mean curvature $H = \frac{1}{n} \text{tr}_{g_D} B$.

Exercise 19. let (M, g) be a complete riemannian manifold. suppose $f : M \rightarrow \mathbb{R}$ is a smooth function with

$$|\nabla f| = 1, \quad \text{Hess } f = 0.$$

set $N = f^{-1}(0)$, $h = g|_N$, show that (N, h) is a totally geodesic submanifold of (M, g) .

1.5. Parallel transports, geodesics and exponential maps

PARALLEL TRANSPORT

Let $\gamma : I \rightarrow (M, g)$ be a smooth curve.

Proposition 20 (definition of parallel transport). For any $v \in T_{\gamma(t_0)} M$, there exists a unique vector field $V \in \Gamma(I, \gamma^* TM)$ (along γ) with

$$(1) \quad V(t_0) = v; \quad (2) \quad \hat{\nabla} V = 0.$$

Define the parallel transport along γ by $P_{t_0, t, \gamma} = V(t)$, for any $t_0, t \in I$.

List of properties: the gist is a take a *parallel frame*.

- $P_{t_2, t_3, \gamma} \circ P_{t_1, t_2, \gamma} = P_{t_1, t_3, \gamma}$, $P_{t, t, \gamma} = \text{id}$.

- $P_{s,t,\gamma} : T_{\gamma(s)}M \rightarrow T_{\gamma(t)}M$ is a linear isometry for any $s, t \in I$;
- $F(t, (s, v)) := (t, P_{s,t,\gamma}(v))$ is a smooth function;
- $\frac{d}{dt} P_{t,t_0,\gamma}(V(t)) = P_{t,t_0,\gamma}(\hat{\nabla} V(t))$, for any vector field V along γ .

Exercise 21. prove the properties above.

GEODESIC AND EXPONENTIAL MAP

Proposition 22 (definition of geodesic). *For any $p \in M, v \in T_p M, t_0 \in \mathbb{R}$, there is an open interval $I \ni t_0$ and a smooth curve $\gamma : I \rightarrow M$ with*

$$(1) \quad \gamma(t_0) = p, \gamma'(t_0) := (\gamma_* \frac{d}{dt})|_{t_0} = v;$$

$$(2) \quad \hat{\nabla} \gamma' = 0 \text{ along } I.$$

The curve satisfying (2), i.e.

$$\hat{\nabla} \gamma' = \hat{\nabla} \gamma_* \frac{d}{dt} = \frac{d^2 \gamma^i}{dt^2} \frac{\partial}{\partial x^i} + \frac{d\gamma^i}{dt} \frac{d\gamma^j}{dt} \Gamma_{ij}^k(\gamma) \frac{\partial}{\partial x^k} = 0,$$

is called a geodesic along I . Up to a shift of position, we suppose $\gamma(0) = p, \gamma'(0) = v$ and write $I_{p,v}$ for the maximal existence interval of γ .

List of properties:

- $|\gamma'|$ is a constant for the geodesic γ ;
- $\gamma_{cv}(t) = \gamma_v(ct)$, i.e. invariant under rescaling.
- $P_{0,t,\gamma_v}(v) = \gamma_v'(t)$.

Definition 23 (exponential map). Write $\mathcal{E}_p = \{v \mid 1 \in I_{p,v}\}$, the exponential map $\exp_p : \mathcal{E}_p \rightarrow M$ is defined by

$$\exp_p(v) = \gamma_v(1),$$

where γ_v is the geodesic with $\gamma(0) = p, \gamma'(0) = v$.

List of properties:

- $\exp_p(tv) = \gamma_v(t)$, for $t \in I_{p,v}$;
- \exp is smooth on $\mathcal{E} = \{(p, v) \mid v \in \mathcal{E}_p\}$;
- \exp is a local diffeomorphism, since the differential

$$\exp_{*,0} : T_0(T_p M) \rightarrow T_p M$$

is the identity map.

- set $B_r(p) = \{\exp_p(v) \mid |v| < r\}$, then $\exp|_{B_r(p)}$ is a diffeomorphism. The injectivity radius of p is

$$\text{inj}_p(M) := \sup\{r \mid \exp|_{B_r(p)} \text{ is diffeomorphic}\},$$

and $\text{inj}(M) := \inf_p \text{inj}_p(M)$.

Exercise 24. prove the following Gauss' lemma: fix $p \in M, r < \text{inj}_p(M)$ and I an open interval. suppose

- (1) $w(s) : I \rightarrow T_p M$ satisfies $|w(s)| = r$ and
- (2) $\alpha(t, s) := \exp_p(tw(s))$ for $(t, s) \in \mathbb{R} \times I, tw(s) \in \mathcal{E}_p$.

then

$$\left\langle \alpha_* \frac{\partial}{\partial s}, \alpha_* \frac{\partial}{\partial t} \right\rangle = 0.$$

Exercise 25. (1) let M be a smooth manifold and ∇ any connection on TM . We define the curvature endomorphism by

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z.$$

then ∇ is said to be flat if $R(X, Y)Z \equiv 0$. show that the followings are euqivalent.

- (a) ∇ is flat;
- (b) for every point $p \in M$, there exists a parallel local frame defined on a neighborhood of p ;
- (c) for all $p, q \in M$, parallel transport along an admissible curve segment from p to q depends only on the path-homotopy class.
- (d) parallel transport around any sufficiently small closed curve is the identity, i.e. for every $p \in M$, there exists a neighborhood U of p such that if $\gamma : [a, b] \rightarrow U$ is an admissible curve in U starting and ending at p , then $P_{ab} : T_p M \rightarrow T_p M$ is the identity map.

(2) a vector field X is said to be parallel if $\nabla X \equiv 0$.

- (a) let $p \in \mathbb{R}^n, v \in T_p \mathbb{R}^n$, show that there is a unique parallel vector field Y on \mathbb{R}^n such that $Y_p = v$.
- (b) let $X(\varphi, \theta) = (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$ be the spherical coordinate of an open subset $U \subset S^2$, let $X_\varphi = X_* \frac{\partial}{\partial \varphi}, X_\theta = X_* \frac{\partial}{\partial \theta}$. compute $\nabla_{X_\theta} X_\varphi, \nabla_{X_\varphi} X_\varphi$, and conclude that X_φ is parallel along the equator and along each meridian $\theta = \theta_0$.

(c) let $p = (1, 0, 0) \in S^2$, show that there is no parallel vector field W on any neighborhood of p in S^2 such that $W_p = X_\varphi|_p$.

(d) conclude that no neighborhood of p in (S^2, g) is isometric to an open subset of $(\mathbb{R}^2, g_{\text{can}})$.

1.6. Completeness

COMPLETENESS OF MANIFOLDS AND VECTOR FIELDS

A riemannian manifold is naturally a metric space under

$$d_g(p, q) = \inf_{\gamma \in \mathcal{L}} \text{length}(\gamma) = \inf_{\gamma \in \mathcal{L}} \int |\gamma'|$$

where \mathcal{L} is the collection of piecewise smooth curves joining p, q .

Using Gauss' lemma (Exercise 24), one can show

Proposition 26. *Fix $p \in M, r < \text{inj}_p(M)$, then for any v with $|v| < r$,*

$$d_g(p, \exp_p(v)) = |v|.$$

Thus the shortest curve joining p, q must be a geodesic.

Definition 27 (completeness of a manifold). *(M, g) is (geodesically) complete if $\exp_p(v)$ is well-defined for all $p \in M, v \in T_p M$. Or equivalently, all the geodesics are well-defined on \mathbb{R} .*

Definition 28 (completeness of a vector field). *X is complete if it has a global flow, i.e. the integral curve extends to \mathbb{R} .*

Exercise 29. (1) let (M, g) be complete, V a smooth vector field with $|V| \leq C$, show that V is complete.

(2) let (M, g) be complete, show that every Killing vector field is complete.

HOPF-RINOW THEOREM

Theorem 30 (Hopf-Rinow). *The followings are equivalent*

- (1) (M, g) is geodesically complete;
- (2) there exists some $p \in M$ such that \exp_p is well-defined on $T_p M$;
- (3) every closed and bounded subset of M is compact.
- (4) (M, d_g) is metrically complete.

Exercise 31. (1) every compact manifold is complete;

(2) if $(M, g_1), (M, g_2)$ satisfies $g_1 \geq g_2$ and (M, g_2) is complete, then (M, g_1) is also complete.

(3) a riemannian manifold is said to be homogeneous if the isometry group acts transitively. show that the homogeneous manifolds are complete.

(4) let $O \subset (M, g)$ be an open subset, show that if (O, g) is complete, then $O = M$.

(5) let $(M, g) = (\mathbb{R} \times N, dr^2 + \rho^2 g_N)$ where $\rho : \mathbb{R} \rightarrow (0, \infty)$, (N, g_N) is complete. show that (M, g) is complete.

(6) show that any riemannian manifold (M, g) admits a conformal change $(M, \lambda^2 g)$ that is complete.

1.7. Normal coordinates

Definition 32 (normal coordinates). Take an ONB of $T_p M$, and define $B : \mathbb{R}^n \rightarrow T_p M$, $r \mapsto r^i e_i$, which is an isometry. The (reversed) map

$$\varphi = B^{-1} \circ \exp_p^{-1} : U \rightarrow T_p M \rightarrow \mathbb{R}^n$$

gives $(x^i) = (r^i \circ \varphi)$, the normal coordinates centered at p .

List of properties:

- $\varphi_* \frac{\partial}{\partial x^i}|_p = \frac{\partial}{\partial r^i}$ and $\varphi_*(e_i) = B^{-1}e_i = \frac{\partial}{\partial r^i}$, so $\frac{\partial}{\partial x^i}|_p = e_i$;
- $g_{ij}(p) = \delta_{ij}$;
- for $v = v^i \frac{\partial}{\partial x^i}|_p$, $\gamma_v^i(t) = tv^i$;
- $\Gamma_{ij}^k|_p = 0$, thus $\frac{\partial}{\partial x^k} g_{ij}|_p = 0$.

Theorem 33 (local expansion of metric). Under any normal coordinates,

$$g_{ij} = \delta_{ij} - \frac{1}{3} R_{iklj}|_p x^k x^l + O(|x|^3), \quad g^{ij} = \delta_{ij} + \frac{1}{3} R_{iklj}|_p x^k x^l + O(|x|^3),$$

and also,

$$\det g = 1 - \frac{1}{3} \text{Ric}_{ij}|_p x^i x^j + O(|x|^3), \quad \frac{\partial g_{ij}}{\partial x^k x^l} = \frac{1}{3} (R_{iklj}|_p + R_{ilkj}|_p).$$

Exercise 34. show for small r that

$$(1) \text{Vol}(B(p, r)) = \omega_n r^n \left(1 - \frac{S_p}{6(n+2)} r^2 + O(r^3) \right);$$

$$(2) \text{Area}(S(p, r)) = n\omega_n r^{n-1} \left(1 - \frac{S_p}{6n} r^2 + O(r^3)\right).$$

Consider the distance function $r(q) := d_g(p, q)$ on $U = M \setminus \text{cut}(p)$.

[List of properties:](#)

- r is continuous and is smooth on $U \setminus \{p\}$;
- $r(q) = |\exp_p^{-1}(q)|$;
- $\nabla r = g^{ij} \frac{\partial r}{\partial x^i} \frac{\partial}{\partial x^j}$ is a smooth vector field on $U \setminus \{p\}$.

In normal coordinates, recall that $\gamma_v^i(t) = x^i \circ \gamma_v(t) = tv^i$ for $v = v^i \frac{\partial}{\partial x^i}|_p$, so $r(q) = |\exp_p^{-1}(q)| = |\exp_p^{-1}(\exp_p(x^i(q) \frac{\partial}{\partial x^i}|_p))| = \sqrt{\sum (x^i(q))^2}$.

Definition 35 (radial vector field). $\partial_r := \frac{x^i}{r} \frac{\partial}{\partial x^i} = \sum_i \frac{\partial r}{\partial x^i} \frac{\partial}{\partial x^i}$.

Theorem 36. *On $U \setminus \{p\}$*

- (1) ∂_r is nowhere-vanishing and orthogonal to the level set of r ;
- (2) (Gauss' lemma) $\nabla r = \partial_r$, $|\partial_r| = 1$.

[List of properties:](#) (as corollaries)

- $\mathcal{H}_r(\partial_r) = \nabla_{\partial_r} \partial_r = 0$.
- $\sum_j g_{ij} x^j = x^i$, $g_{ij} = \delta_{ij} - \sum_k \frac{\partial g_{ik}}{\partial x^j} x^k$;
- $\sum_j \frac{\partial g_{ij}}{\partial x^k} x^j = \sum_j \frac{\partial g_{kj}}{\partial x^i} x^j$, $\sum_{i,j} \frac{\partial g_{ij}}{\partial x^k} x^i x^j = \sum_{i,j} \frac{\partial g_{jk}}{\partial x^i} x^i x^j = 0$
- $\sum_{i,j} \Gamma_{ij}^k x^i x^j = 0$.

Exercise 37. consider the normal coordinates around p , show that at p

$$\frac{\partial^2}{\partial x^l \partial x^k} g_{ji} + \frac{\partial^2}{\partial x^j \partial x^l} g_{ki} + \frac{\partial^2}{\partial x^k \partial x^j} g_{li} = 0.$$

Exercise 38. show that in a riemannian manifold,

$$d(\exp_p(v), \exp_p(w)) = |v - w| + O(r^2)$$

for $v, w \in T_p M$, $|v|, |w| \leq r$.

1.8. Hodge star operator and Hodge decomposition

INNER PRODUCT

Definition 39 (musical operators).

$$(1) \ X^\flat := g_{ij} X^i dx^j; \quad (2) \ \omega^\sharp := g^{ij} \omega_i \frac{\partial}{\partial x^j}$$

A natural way to extend g is $g(dx^i, dx^j) (= g((dx^i)^\sharp, (dx^j)^\sharp)) = g^{ij}$, or

$$g(dx^I, dx^J) = k! \det \begin{pmatrix} g^{i_1 j_1} & \cdots & g^{i_1 j_k} \\ \vdots & \ddots & \vdots \\ g^{i_k j_1} & \cdots & g^{i_k j_k} \end{pmatrix} =: k! g^{IJ}$$

for $\wedge^k T^*M$. For $\varphi = \sum f_{i_1 \dots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k}$, we write

$$\varphi_{i_1 \dots i_k} = \sum_{\sigma \in S_k} (-1)^{|\sigma|} f_{i_{\sigma(1)} \dots i_{\sigma(k)}}$$

where $\varphi_{i_1 \dots i_k}$ is skew-symmetric.

Definition 40 (inner product for k -forms). (1) $\langle \varphi, \psi \rangle := \frac{1}{k!} g(\varphi, \psi)$;

(2) $(\varphi, \psi) := \int \langle \varphi, \psi \rangle d\text{Vol} = \frac{1}{k!} \int g(\varphi, \psi) d\text{Vol}$.

List of properties:

- $\varphi = \frac{1}{k!} \sum \varphi_{i_1 \dots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} = \sum_{i_1 < \dots < i_k} \varphi_{i_1 \dots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k}$;
- $\langle \varphi, \psi \rangle = g^{IJ} \varphi_I \psi_J = \frac{1}{k!} \sum g^{i_1 j_1} \cdots g^{i_k j_k} \varphi_{i_1 \dots i_k} \psi_{j_1 \dots j_k}$;
- $\langle d\text{Vol}, d\text{Vol} \rangle = 1$.

Exercise 41. prove the properties above.

HODGE STAR OPERATOR

Definition 42 (Hodge star operator). Take an ONB of T^*M , $\xi^1 \wedge \cdots \wedge \xi^n = d\text{Vol}_g$. Define the linear operator $* : \Omega^k(M) \rightarrow \Omega^{n-k}(M)$ by

$$*(v_I \xi^I) = v_I \text{sgn}(I, I^c) \xi^{I^c}$$

where $I = (i_1 \dots i_k)$, $I^c = (j_1 \dots j_{n-k})$, $i_1 < \cdots < i_k$, $j_1 < \cdots < j_{n-k}$.

List of properties:

- $*1 = d\text{Vol}_g$, $*d\text{Vol}_g = 1$, and $**v = (-1)^{k(n-k)} v$, for $v \in \Omega^k(M)$;
- $*(u \wedge v) = \langle *u, v \rangle = (-1)^{k(n-k)} \langle u, *v \rangle$, for $u \in \Omega^k(M)$, $v \in \Omega^{n-k}(M)$;
- $u \wedge *v = v \wedge *u = \langle u, v \rangle d\text{Vol}_g$, $\langle *u, *v \rangle = \langle u, v \rangle$, for $u, v \in \Omega^k(M)$.
Thus $(u, v) = \int u \wedge *v$.

Definition 43 (adjoint operator of d). $(d\varphi, \psi) =: (\varphi, d^*\psi)$.

Theorem 44 (expression of d^*). On $\Omega^k(M)$, $d^* = (-1)^{nk+n+1} * d *$.

Proof. For $u \in \Omega^{k-1}(M), v \in \Omega^k(M)$,

$$\begin{aligned}
\int \langle u, *d*v \rangle d\text{Vol}_g &= \int u \wedge **d*v \\
&= (-1)^{(k-1)(n-k+1)} \int u \wedge d*v \\
&\stackrel{*}{=} (-1) \cdot (-1)^{k-1} \cdot (-1)^{(k-1)(n-k+1)} \int du \wedge *v \\
&= (-1)^{nk+n+1} \int \langle du, v \rangle d\text{Vol}_g.
\end{aligned}$$

Here we use Stokes' formula for $\stackrel{*}{=}$. □

Exercise 45. for $\omega \in \Omega^p(M)$, show that

$$(d\omega)(X_0, \dots, X_p) = \sum (-1)^i (\nabla_{X_i} \omega)(X_0, \dots, \widehat{X_i}, \dots, X_p).$$

Exercise 46. for 1-form ω , show that

$$d^* \omega = -g^{ij} \left(\frac{\partial \omega_i}{\partial x^j} - \Gamma_{ij}^k \omega_k \right) =: -\nabla^i \omega_i.$$

DIVERGENCE

Definition 47 (divergence). The divergence of X is defined by

$$\text{div } X \cdot d\text{Vol}_g = L_X d\text{Vol}_g.$$

List of properties:

- $\text{div } X = \frac{\partial X^i}{\partial x^i} + \Gamma_{is}^s X^i = \nabla_i X^i$ (regard $\nabla_i X^j$ as coefficient of $\nabla_i X$);
- divergence theorem: if X is of compact support, then

$$\int \text{div } X d\text{Vol}_g = 0.$$

- for 1-form ω with compact support, $d^* \omega = \text{div } \omega^\sharp$, so

$$\int d^* \omega d\text{Vol}_g = 0.$$

- for $f_0, f_1 \in C_0^\infty(M)$, $\text{div } f_1 \nabla f_2 = g(\nabla f_1, \nabla f_2) + f_1 \Delta f_2$, so

$$\int f_1 \Delta f_2 = - \int g(\nabla f_1, \nabla f_2) = \int f_2 \Delta f_1.$$

Exercise 48. (1) solve *Exercise 46* with the divergence theorem;

(2) regard ∇X as ∇X^\flat , then $\operatorname{div} X = \operatorname{tr}_g(\nabla X)$, this is a more general definition of divergence. for any smooth k -tensor field, define

$$\operatorname{div} F = \operatorname{tr}_g(\nabla F),$$

where the trace is taken on the first two indices. For smooth covariant k -tensor field F and $(k+1)$ -tensor field on a compact manifold (M, g) with boundary, show that

$$\int_M \langle \nabla F, G \rangle d\operatorname{Vol}_g = \int_{\partial M} \left\langle F \otimes N^\flat, G \right\rangle d\operatorname{Vol}_{\widehat{g}} - \int_M \langle F, \operatorname{div} G \rangle d\operatorname{Vol}_g$$

where \widehat{g} is the induce metric of ∂M .

(3) let (M, g) be a riemannian manifold and $f : M \rightarrow \mathbb{R}$ a lipschitz function. then for any $\varphi \in C_0^\infty(M, \mathbb{R})$,

$$-\int_M \langle \nabla \varphi, \nabla f \rangle d\operatorname{Vol}_g = \int_M \Delta_g \varphi \cdot f d\operatorname{Vol}_g.$$

HODGE DECOMPOSITION

Definition 49 (Beltrami-Laplace operator (a.k.a. Hodge laplacian)).

$$\Delta := dd^* + d^*d$$

A k -form u is called harmonic if $\Delta u = 0$, denote by $\mathcal{H}^k(M)$ the set of harmonic k -forms.

Theorem 50 (Hodge decomposition). *There is an orthogonal decomposition*

$$\Omega^k(M) = \mathcal{H}^k(M) \oplus d(\Omega^{k-1}(M)) \oplus d^*(\Omega^{k+1}(M)).$$

Moreover, $\dim_{\mathbb{R}} \mathcal{H}^k(M) < \infty$.

Theorem 51. $\mathcal{H}^k(M) \cong H_{dR}^k(M; \mathbb{R})$.

Exercise 52. (1) show that $\Delta u = 0$ iff $du = 0, d^*u = 0$;

(2) prove Theorem 51;

(3) show that $H_{dR}^1(\mathbb{R}^2 \setminus \{0\}; \mathbb{R}) \neq 0$.

(4) suppose that M is connected, show that $H_{dR}(M, \mathbb{R}) \cong \mathbb{R}$.

1.9. Tensor calculus

COVRAIANT DERIVATIVES

A seemingly natural way to extend ∇ is using musical operators, i.e.

$$\nabla_{\frac{\partial}{\partial x^i}} dx^j = \left(\nabla_{\frac{\partial}{\partial x^i}} (dx^j)^\sharp \right)^\flat = \left(\nabla_{\frac{\partial}{\partial x^i}} g^{jk} \frac{\partial}{\partial x^k} \right)^\flat = -\Gamma_{ik}^j dx^k.$$

But Leibniz rule simplifies the calculations greatly:

$$\left(\nabla_{\frac{\partial}{\partial x^i}} dx^j \right) \frac{\partial}{\partial x^k} = \frac{\partial}{\partial x^i} \left\langle dx^j, \frac{\partial}{\partial x^k} \right\rangle - \left\langle dx^j, \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^k} \right\rangle = -\Gamma_{ik}^s \delta_{js} = -\Gamma_{ik}^j.$$

Definition 53 (covraiant derivative). *For $T \in \Gamma(M, \otimes^r T^* M \otimes \otimes^s TM)$, the covariant derivative $\nabla T \in \Gamma(M, \otimes^{r+1} T^* M \otimes \otimes^s TM)$ is defined by*

$$(\nabla T)(X, X_1, \dots, \omega_s) = (\nabla_X T)(X_1, \dots, \omega_s).$$

$$\text{For } T = T_{i_1 \dots i_r}^{j_1 \dots j_s} dx^{i_1} \otimes \dots \otimes \frac{\partial}{\partial x^{i_s}}, \nabla T = W_{ii_1 \dots i_r}^{j_1 \dots j_s} dx^i \otimes dx^{i_1} \otimes \dots \otimes \frac{\partial}{\partial x^{i_s}} = \left(\frac{\partial}{\partial x^i} T_{i_1 \dots i_r}^{j_1 \dots j_s} - \sum_{l=1}^r \Gamma_{il}^p T_{i_1 \dots p \dots i_r}^{j_1 \dots j_s} + \sum_{m=1}^s \Gamma_{iq}^{jm} T_{i_1 \dots i_r}^{j_1 \dots q \dots j_s} \right) dx^i \otimes dx^{i_1} \otimes \dots \otimes \frac{\partial}{\partial x^{i_s}}.$$

We ususlly write $T_{i_1 \dots i_r}^{j_1 \dots j_s}$, i.e. the coefficient, instead of the whole tensor.

Definition 54 (2nd covariant derivative). $\nabla^2 T := \nabla(\nabla T)$, or locally

$$\nabla_k \nabla_i T_{i_1 \dots i_r}^{j_1 \dots j_s} = \nabla_k (W_{ii_1 \dots i_r}^{j_1 \dots j_s}).$$

Remark 55. Caution! $(\nabla_k (\nabla_i T))_{i_1 \dots i_r}^{j_1 \dots j_s} \neq \nabla_k \nabla_i T_{i_1 \dots i_r}^{j_1 \dots j_s}$, in fact, the first one is not a tensor.

Lemma 56. $\nabla_{X,Y}^2 T = \nabla_X \nabla_Y T - \nabla_{\nabla_X Y} T$, or locally

$$\nabla_k \nabla_i T_{i_1 \dots i_r}^{j_1 \dots j_s} = (\nabla_k (\nabla_i T))_{i_1 \dots i_r}^{j_1 \dots j_s} - (\Gamma_{ki}^j \nabla_j T)_{i_1 \dots i_r}^{j_1 \dots j_s}.$$

Proof.

$$\begin{aligned} \nabla_k (W_{ii_1 \dots i_r}^{j_1 \dots j_s}) &= \frac{\partial}{\partial x^k} W_{ii_1 \dots i_r}^{j_1 \dots j_s} + \sum_m \Gamma_{kq}^{jm} W_{ii_1 \dots i_r}^{j_1 \dots q \dots j_s} - \sum_l \Gamma_{ki_l}^p W_{ii_1 \dots p \dots i_r}^{j_1 \dots j_s} \\ &\quad - \Gamma_{ki}^j W_{ji_1 \dots p \dots i_r}^{j_1 \dots j_s} \\ &= \frac{\partial}{\partial x^k} (\nabla_i T)_{i_1 \dots i_r}^{j_1 \dots j_s} + \sum_m \Gamma_{kq}^{jm} (\nabla_i T)_{i_1 \dots i_r}^{j_1 \dots q \dots j_s} \\ &\quad - \sum_l \Gamma_{ki_l}^p (\nabla_i T)_{i_1 \dots p \dots i_r}^{j_1 \dots j_s} - \Gamma_{ki}^j W_{ji_1 \dots p \dots i_r}^{j_1 \dots j_s} \\ &= (\nabla_k (\nabla_i T))_{i_1 \dots i_r}^{j_1 \dots j_s} - (\Gamma_{ki}^j \nabla_j T)_{i_1 \dots i_r}^{j_1 \dots j_s}. \end{aligned}$$

□

RICCI IDENTITY

From the definition of curvature tensor,

$$\begin{aligned} R(X, Y)T &= \nabla_X \nabla_Y T - \nabla_{\nabla_X Y} T - \nabla_Y \nabla_X T + \nabla_{\nabla_Y X} T \\ &= \nabla_{X,Y}^2 T - \nabla_{Y,X}^2 T. \end{aligned}$$

$$\begin{aligned} \nabla_k \nabla_l T_{i_1 \dots i_r}^{j_1 \dots j_s} - \nabla_l \nabla_k T_{i_1 \dots i_r}^{j_1 \dots j_s} &= \left(R \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right) T \right) \left(\frac{\partial}{\partial x^{i_1}}, \dots, dx^{j_s} \right) \\ &= \left(R \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right) T \right) T_{i_1 \dots i_r}^{j_1 \dots j_s} \\ &\quad + \sum_m R_{klq}^{j_m} T_{i_1 \dots i_r}^{j_1 \dots q \dots j_s} - \sum_t R_{kli_t}^p T_{i_1 \dots p \dots i_r}^{j_1 \dots j_s} \end{aligned}$$

Since $R \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right) f = 0$ for smooth function f , we obtain the following:

Theorem 57 (Ricci identity).

$$\nabla_k \nabla_l T_{i_1 \dots i_r}^{j_1 \dots j_s} - \nabla_l \nabla_k T_{i_1 \dots i_r}^{j_1 \dots j_s} = \sum_m R_{klq}^{j_m} T_{i_1 \dots i_r}^{j_1 \dots q \dots j_s} - \sum_t R_{kli_t}^p T_{i_1 \dots p \dots i_r}^{j_1 \dots j_s}.$$

In particular, for vector fields and 1-forms,

$$\nabla_k \nabla_l X^i - \nabla_l \nabla_k X^i = R_{klq}^i X^q,$$

$$\nabla_k \nabla_l \omega_j - \nabla_l \nabla_k \omega_j = -R_{klj}^p \omega_p.$$

Exercise 58. prove the ricci identity in (normal) local coordinates.

CONTRACTION AND 2ND BIANCHI IDENTITY

Using Leibniz rule for 2-tensor T ,

$$Xg(g, T) = g(\nabla_X g, T) + g(g, \nabla_X T) = g(g, \nabla_X T),$$

this works similarly for 4-tensor S ,

$$Xg(g \otimes g, S) = g(\nabla_X g \otimes g, S) + g(g \otimes g, \nabla_X T) = g(g \otimes g, \nabla_X T).$$

Proposition 59 (magic formulae for 2- and 4-tensors).

$$\nabla_k g^{ij} T_{ij} = g^{ij} \nabla_k T_{ij},$$

$$\nabla_s g^{ij} g^{kl} S_{ijkl} = g^{ij} g^{kl} \nabla_s S_{ijkl}.$$

Theorem 60 (2nd Bianchi identity).

$$\nabla_i R_{jkpq} + \nabla_j R_{kjpq} + \nabla_k R_{ijpq} = 0.$$

As a corollary,

$$\begin{aligned}
0 &= g^{jp}g^{kq}(\nabla_i R_{jkpq} + \nabla_j R_{kipq} + \nabla_k R_{ijpq}) \\
&= -\nabla_i g^{jp}g^{kq}R_{kjpq} + g^{jp}\nabla_j g^{kq}R_{ikqp} + g^{kq}\nabla_k g^{jp}R_{ijpq} \\
&= -\nabla_i S + g^{jp}\nabla_j \text{Ric}_{ip} + g^{kq}\nabla_k \text{Ric}_{iq},
\end{aligned}$$

i.e. $\nabla_i S = 2g^{jk}\nabla_j \text{Ric}_{ik}$, this is the contracted Bianchi identity.

Theorem 61 (Schur's lemma). *Let (M, g) be a connected Riemannian manifold with $\dim M \geq 3$. If $f \in C^\infty(M)$, and one of the following hold*

- (1) $K = f$, i.e. $R(X, Y, Y, X) = |X \wedge Y|^2 f$ for $X, Y \in TM$;
- (2) $\text{Ric} = (n-1)fg$

then f is a constant.

Proof. Assuming (2), $S = g^{ij} \text{Ric}_{ij} = n(n-1)f$.

$$\nabla_k S = 2g^{ij}\nabla_i \text{Ric}_{kj} = 2(n-1)g^{ij}\nabla_i f g_{kj} = 2(n-1)\nabla_k f.$$

Thus $n(n-1)\nabla_k f = 2(n-1)\nabla_k f$, which implies that f is constant. \square

Exercise 62. prove the 2nd Bianchi identity in local coordinates.

1.10. Miscellany

RIEMANNIAN SUBMERSIONS

Exercise 63. let $\pi : (\overline{M}, \overline{g}) \rightarrow (M, g)$ be a riemannian submersion.

- (1) let $H \subset T\overline{M}$ be the subbundle such that $H_p \perp \ker \pi_{*,p}$,
 - (a) for each $X \in \Gamma(M, TM)$, there exists a unique $\overline{X} \in \Gamma(\overline{M}, H)$ such that $\pi_* \overline{X} = X$;
 - (b) let $\sigma : [a, b] \rightarrow \overline{M}$ be a smooth curve, then for each $p \in \pi^{-1}(\sigma(a))$, there exists $\varepsilon > 0$ and a unique smooth curve $\overline{\sigma} : [a, a + \varepsilon] \rightarrow \overline{M}$ such that

$$\overline{\sigma}(a) = p, \pi \circ \overline{\sigma} = \sigma, \overline{\sigma}'(t) \in H_{\overline{\sigma}(t)}.$$

- (2) for $X, Y \in \Gamma(M, TM)$, we have

$$\nabla_{\overline{X}}^g \overline{Y} = \overline{\nabla_X^h Y} + \frac{1}{2}[\overline{X}, \overline{Y}]^v$$

where Z^v is the orthogonal projection of Z to $\ker \pi_*$.

(3) for $X, Y \in \Gamma(M, TM)$, we have

$$R(X, Y, Y, X) = \overline{R}(\overline{X}, \overline{Y}, \overline{Y}, \overline{X}) + \frac{3}{4} |[\overline{X}, \overline{Y}]^v|^2.$$

(4) show that $\pi \circ \exp_p(v) = \exp_{\pi(p)}(d\pi_p(v))$. in particular, if $\tilde{\gamma}$ is a geodesic, then $\pi \circ \tilde{\gamma}$ is a geodesic.

(5) show that

- (a) (M, g) is complete if $(\overline{M}, \overline{g})$ is complete;
- (b) π is a fibration if $(\overline{M}, \overline{g})$ is complete.
- (c) give a counterexample when $(\overline{M}, \overline{g})$ is not complete.

LIE GROUPS

A Riemannian metric h on a Lie group G is said to be left-invariant if $L_g^*h = h$, and bi-invariant if both left- and right-invariant.

Exercise 64. let G be a lie group with \mathfrak{g} the lie algebra.

(1) if h is a bi-invariant metric on a Lie group G , show that for left-invariant vector fields X, Y, Z

$$h([X, Y], Z) = h(X, [Y, Z]).$$

(2) let $\langle \bullet, \bullet \rangle_e$ be an inner product on \mathfrak{g} , define

$$\langle X_g, Y_g \rangle = \langle (L_{g^{-1}})_* X_g, (L_{g^{-1}})_* Y_g \rangle_e.$$

show that

- (a) $\langle \bullet, \bullet \rangle$ is a left-invariant Riemannian metric on G .
- (b) there is a bijection

$$\{ \text{Inner products on } \mathfrak{g} \} \longleftrightarrow \left\{ \begin{array}{l} \text{left-invariant} \\ \text{metrics on } G \end{array} \right\}.$$

(c) under the above bijection, $\text{Ad}(G)$ -invariant inner products on \mathfrak{g} correspond to bi-invariant riemannian metrics on G .

(3) let h be a bi-invariant riemannian metric with connection ∇ , then

$$\nabla_X Y = \frac{1}{2}[X, Y],$$

for left-invariant vector fields X, Y . Moreover,

$$R(X, Y, Z, W) = -\frac{1}{4}([X, Y], [Z, W]),$$

for left-invariant vector fields X, Y, Z, W .

(4) let h be a bi-invariant riemannian metric. show that

- (a) the geodesics on G are precisely the integral curves of the left-invariant vector fields.
- (b) the exponential map for the lie group coincides with the exponential map of the levi-civita connection.

Exercise 65. the heisenberg group with its lie algebra is

$$G = \left\{ \begin{pmatrix} 1 & a & c \\ & 1 & b \\ & & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{R} \right\}, \quad \mathfrak{g} = \left\{ \begin{pmatrix} x & z \\ & y \end{pmatrix} \middle| x, y, z \in \mathbb{R} \right\}.$$

a basis for the lie algebra is

$$X = \begin{pmatrix} 1 \\ & & & \\ & & & \\ & & & \end{pmatrix}, Y = \begin{pmatrix} & & \\ & 1 & \\ & & \end{pmatrix}, Z = \begin{pmatrix} & & 1 \\ & & & \\ & & & \end{pmatrix}.$$

- (1) show that the only non-zero brackets are $[X, Y] = -[Y, X] = Z$.
- (2) consider a left-invariant metric with $\{X, Y, Z\}$ an onb. show that the ricci tensor has both negative and positive eigenvalues.
- (3) show that the scalar curvature is constant.
- (4) show that the ricci tensor is not parallel.

2. The Bochner technique

2.1. Killing vector fields

BOCHNER FORMULA FOR SMOOTH FUNCTIONS

Proposition 66. Let $f : M \rightarrow \mathbb{R}$ be a smooth function over (M, g) , then

$$\frac{1}{2}\Delta_g |\nabla f|^2 = |\text{Hess } f|^2 + \text{Ric}(\nabla f, \nabla f) + g(\nabla \Delta_g f, \nabla f).$$

CURVATURE AND KILLING VECTOR FIELDS

Definition 67 (Killing vector field). $L_X g = 0$ (the flow is isometric).

Using Koszul formula, we can show

$$g((L_X \nabla)_Y Z, W) = 0, \text{ i.e. } L_X \nabla = 0.$$

which gives a useful relation

$$R(X, Y)Z + \nabla_{Y, Z}^2 X = 0.$$

It can also be stated and proven in terms of coefficients.

$$g_{il}\nabla_j\nabla_k X^i + R_{ijkl}X^i = 0.$$

Theorem 68. *Let X be a Killing vector field, $f = \frac{1}{2}|X|^2$,*

$$(1) \nabla f = -\nabla_X X;$$

$$(2) \text{ For any vector field } V,$$

$$\text{Hess } f(V, V) = g(\nabla_V X, \nabla_V X) - R(V, X, X, V).$$

In particular,

$$\Delta_g f = |\nabla X|^2 - \text{Ric}(X, X).$$

Theorem 69. *Let (M, g) be a compact Riemannian manifold*

$$(1) \text{ if } \text{Ric} < 0, \text{ then } M \text{ has no non-trivial Killing vector field.}$$

$$(2) \text{ (Bochner) if } \text{Ric} \leq 0, \text{ then a vector field is parallel iff it is Killing.}$$

The following theorem is proven using “linear algebra”.

Theorem 70. *Let (M, g) be a compact Riemannian manifold with positive sectional curvature. If M is of even dimension, then every Killing field has a zero.*

Remark 71. *There are examples of non-vanishing Killing vector fields if M is odd, e.g. $V_x = (x_2, -x_1, \dots, x_{2n}, -x_{2n-1})$ on S^{2n-1} .*

Exercise 72 (conformal killing vector field). *a vector field X is a conformal killing vector field if $L_X g = fg$ for some smooth function $f : M \rightarrow \mathbb{R}$.*

$$(1) \text{ show that } f = 2 \text{ div } X.$$

$$(2) \text{ show that}$$

$$\frac{1}{2}\Delta_g|X|^2 = |\nabla X|^2 - \text{Ric}(X, X) - \left(1 - \frac{2}{n}\right) \langle \nabla \text{div } X, X \rangle.$$

$$(3) \text{ let } (M, g) \text{ be a closed Riemannian manifold with } \text{Ric} < 0, \text{ show that there are no non-zero conformal killing fields.}$$

2.2. Harmonic 1-forms

BOCHNER FORMULA FOR HARMONIC 1-FORMS

Proposition 73. *Let (M, g) be a compact Riemannian manifold, $\alpha \in \Omega^1(M)$ be a harmonic form, then*

$$\frac{1}{2}\Delta_g |\alpha|^2 = |\nabla \alpha|^2 + \text{Ric}(\alpha^\sharp, \alpha^\sharp).$$

For general 1-form α , the Bochner formula is

$$\frac{1}{2}\Delta_g |\alpha|^2 = -g(\Delta \alpha, \alpha) + |\nabla \alpha|^2 + \text{Ric}(\alpha^\sharp, \alpha^\sharp).$$

where Δ is the Hodge laplacian.

Theorem 74. *Suppose (M, g) is a compact Riemannian manifold of non-negative Ricci curvature.*

- (1) *Every harmonic 1-form is parallel. Hence $b_1(M) \leq \dim M$.*
- (2) *If $\text{Ric} > 0$, then $b_1(M) = 0$.*

2.3. Smooth maps

Proposition 75. *Let $f : (M, g) \rightarrow (N, h)$ be a smooth map, then*

$$\begin{aligned} \frac{1}{2}\nabla_g |\text{d}f|^2 &= (\widehat{\nabla}\Delta f, \text{d}f) + |\widetilde{\nabla} \text{d}f|^2 + g^{ik}g^{jl}h_{\alpha\beta} \text{Ric}_{ij} f_k^\alpha f_l^\beta \\ &\quad - g^{ij}g^{kl}R_{\alpha\beta\gamma\delta}f_i^\alpha f_j^\delta f_k^\beta f_l^\gamma. \end{aligned}$$

3. Jacobi fields

3.1. Variation formulae and Jacobi fields

VARIATIONS

Fix $p, q \in (M, g)$, $a < b \in \mathbb{R}$, let \mathcal{L} be the space of smooth curves $\gamma : [a, b] \rightarrow M$ with $\gamma(a) = p, \gamma(b) = q$.

Definition 76 (energy). *For $\gamma \in \mathcal{L}$, $E(\gamma) := \int_a^b \left| \gamma_* \frac{d}{dt} \right|^2 dt$.*

Definition 77 (proper variation). *A proper variation of γ is a smooth map $\alpha : [a, b] \times (-\varepsilon, \varepsilon) \rightarrow M$ with $\alpha(\cdot, s) \in \mathcal{L}, \alpha(\cdot, 0) = \gamma$.*

Proposition 78 (definition of variational field). *Let $X \in \Gamma([a, b], \gamma^* TM)$ with $X_a = X_b = 0$, then there exists a proper variation α of γ with*

$$\alpha_* \frac{\partial}{\partial s} \Big|_{s=0} = X.$$

X is called the variational vector field of α .

Theorem 79 (1st variation formula). *Let α be a proper variation of γ with V the variational vector field, then*

$$\frac{d}{ds} \Big|_{s=0} E(\alpha(\cdot, s)) = \int_a^b \left\langle \widehat{\nabla}_{\frac{d}{dt}} V, \gamma' \right\rangle dt = - \int_a^b \left\langle V, \widehat{\nabla}_{\frac{d}{dt}} \gamma' \right\rangle dt.$$

We can similarly consider the 2nd variation: $\alpha(t, s_1, s_2) : [a, b] \times (-\varepsilon_1, \varepsilon_1) \times (-\varepsilon_2, \varepsilon_2) \rightarrow M$, $\alpha(t, 0, 0) = \gamma(t)$ with variational fields

$$\alpha_* \frac{\partial}{\partial s_1} \Big|_{s_1=s_2=0} = V, \alpha_* \frac{\partial}{\partial s_2} \Big|_{s_1=s_2=0} = W.$$

Theorem 80 (2nd variation formula). *Let α be a proper 2nd variation with V, W the variational vector fields.*

$$\begin{aligned} \frac{\partial^2}{\partial s_1 \partial s_2} \Big|_{s_1=s_2=0} E(\alpha(\cdot, s_1, s_2)) &= \int_a^b \left\langle \widehat{\nabla}_{\frac{d}{dt}} V, \widehat{\nabla}_{\frac{d}{dt}} W \right\rangle dt \\ &\quad - \int_a^b R(V, \gamma', \gamma', W) dt \\ &\quad - \int_a^b \left\langle \left(\overline{\nabla}_{\frac{\partial}{\partial s_1}} \alpha_* \frac{\partial}{\partial s_2} \right) \Big|_{s_1=s_2=0}, \widehat{\nabla}_{\frac{d}{dt}} \gamma' \right\rangle dt. \end{aligned}$$

Remark 81. *An important case is when s_1, s_2 coincide, which occurs in the proof of Synge and Weinstein-Synge theorems.*

JACOBI FIELDS

Definition 82 (Jacobi field). *Let $\gamma : [a, b] \rightarrow (M, g)$ be a geodesic. A vector field J along γ is called a Jacobi field if*

$$\widehat{\nabla} \widehat{\nabla} J + R(J, \gamma') \gamma' = 0.$$

Proposition 83 (local expansion of the length). *Let $f(t) = |J|^2$, where J is a Jacobi field along a geodesic γ , then*

$$f(t) = t^2 - \frac{1}{3} R(J', \gamma', \gamma', J')|_0 t^4 + O(t^6).$$

Acturally, Proposition 83 implies Theorem 33.

Theorem 84 (characterization of a Jacobi field). *Every Jacobi field is given by some variation along some geodesic. Let (M, g) be a Riemannian manifold, $\gamma : [0, 1] \rightarrow M$ be a geodesic, then the Jacobi field along γ with $J(0) = 0$ and $J'(0) = v$ is given by*

$$J = \alpha_* \frac{\partial}{\partial s} \Big|_{s=0}, \quad \alpha = \exp_{\gamma(0)}(t(\gamma'(0) + sv))$$

for s small enough. In particular,

$$J(t) = (\exp_{\gamma(0)})_{*, t\gamma'(0)}(tv).$$

The following result can be proved using normal coordinates.

Proposition 85. *Let (M, g) be a complete Riemannian manifold, $p \in M$, $\gamma : [0, b] \rightarrow M \setminus \text{cut}(p)$ a unit-speed geodesic with $\gamma(0) = p$, and r the distance from p . If J is a normal Jacobi field along γ with $J(0) = 0$, then*

$$\mathcal{H}_r(J(t)) = J'(t), \quad \mathcal{H}(\gamma'(t)) = 0.$$

In particular,

$$\text{Hess } r(J, W)|_s = \int_0^s \langle J', W' \rangle - R(J, \gamma', \gamma', W) dt,$$

for any vector field W along γ with $W(0) = 0$.

Exercise 86. let $\sigma : (-\varepsilon, \varepsilon) \rightarrow (M, g)$ be a smooth curve and $V(s) \in \Gamma((- \varepsilon, \varepsilon), \sigma^* TM)$. consider

$$\alpha(t, s) = \exp_{\sigma(s)}(tV(s)).$$

compute the variational vector field $W(t) = \alpha_* \frac{\partial}{\partial s} \Big|_{s=0}$ and point out $W(0), \hat{\nabla} \frac{d}{dt} W(0)$.

3.2. Conjugate loci and cut loci

Definition 87 (conjugate locus). *Let $\gamma : I \rightarrow (M, g)$ be a geodesic with $p = \gamma(a), q = \gamma(b)$. We say p, q are conjugate along γ if there is a non-trivial Jacobi field along γ with $J(a) = J(b) = 0$. Write the cut locus $\text{conj}(p)$ for the set of all conjugate points of p along some geodesic.*

Theorem 88. *Let $v \in \mathcal{E}_p, \gamma_v(t) = \exp_p(tv), q = \gamma_v(1)$, then v is a critical point of $\exp_p : \mathcal{E}_p \rightarrow M$ iff q is conjugate to p along γ_v .*

Definition 89 (cut time, cut locus). Define the cut time of (p, v) by

$$t_{\text{cut}}(p, v) = \sup\{b \mid \gamma_v|_{[0,b]} \text{ is a minimal geodesic}\},$$

and the cut point along γ_v by $\gamma_v(t_{\text{cut}}(p, v))$. Define the cut locus $\text{cut}(p)$ by the set of all cut points of p .

Theorem 90. Let (M, g) be a complete Riemannian manifold, $p \in M, v \in T_p M$ with $|v| = 1$, and $c = t_{\text{cut}}(p, v)$.

- (1) If $0 < b < c$, then $\gamma_v|_{[0,b]}$ has no conjugate points and is the unique minimal unit-speed geodesic between p and $\gamma_v(b)$.
- (2) if $c < \infty$, then $\gamma_v|_{[0,c]}$ is minimal. One or both of the followings hold:
 - (a) $\gamma_v(c)$ is conjugate to p along γ_v ;
 - (b) there are two or more unit-speed geodesics between p and $\gamma_v(c)$.

Example 91. (1) For $p \in S^n$, $\text{conj}(p) = \text{cut}(p) = \{-p\}$.

- (2) For $p \in \mathbb{RP}^n$, $\text{conj}(p) = \{p\}$, $\text{cut}(p) \simeq S^{n-1}$.
- (3) For $p = (x, y) \in S^1 \times \mathbb{R}$, $\text{conj}(p) = \emptyset$, $\text{cut}(p) = \{-x\} \times \mathbb{R}$.
- (4) For $p \in \mathbb{T}^n$, $\text{cut}(p) \simeq \partial([0, 1]^n)$.

Exercise 92. let (M, g) be a complete Riemannian manifold, $p \in M$. suppose there exists some $q \in \text{cut}(p)$ with $d(p, q) = d(p, \text{cut}(p))$.

- (1) show that either q is conjugate to p , or there are exactly two unit-speed minimal geodesics $\gamma_1, \gamma_2 : [0, b] \rightarrow M$ between p and q with $\gamma'_1(b) = -\gamma'_2(b)$, where $b = d(p, q)$.
- (2) if $\text{inj}_p(M) = \text{inj}(M)$, and q is not conjugate to p along any minimal geodesic, show that there is a closed unit-speed geodesic $\gamma : [0, 2b] \rightarrow M$ such $\gamma(0) = \gamma(2b) = p$ and $\gamma(b) = q$, where $b = d(p, q)$.

There are many related topics like Morse index theorem, skeleton and cellular structure given by Morse theory, etc. To be added someday.

4. Curvature and topology

4.1. Spaces of non-positive sectional curvature

Theorem 93 (Cartan-Hadamard). Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature. For any $p \in M$, $\exp_p : T_p M \rightarrow M$ is a covering map. The universal covering $\widetilde{M} \cong \mathbb{R}^n$.

Corollary 94. Suppose M, N are compact smooth manifolds. If one of them is simply-connected, then $M \times N$ does not admit a Riemannian metric with non-positive sectional curvature.

Theorem 95 (characterization of CH manifolds). Let (M, g) be a simply-connected complete manifold. The followings are equivalent.

- (1) M has non-positive sectional curvature;
- (2) The differential of exponential map is length increasing, i.e.

$$|(\exp_p)_{*,v}(\tilde{v})| \geq |\tilde{v}|$$

for all $p \in M, v, \tilde{v} \in T_p M$.

- (3) The exponential map is distance increasing, i.e.

$$d_g(\exp_p(v), \exp_p(\tilde{v})) \geq |v - \tilde{v}|$$

for all $p \in M, v, \tilde{v} \in T_p M$.

Moreover, if the conditions are satisfied, then the exponential map is diffeomorphic.

Exercise 96. let (M, g) be a ch manifold, $p \in M$.

- (1) fix $v, \tilde{v} \in T_p M$, show that for $0 < t \leq T$,

$$|v - \tilde{v}| \leq \frac{d(\exp_p(tv), \exp_p(t\tilde{v}))}{t} \leq \frac{d(\exp_p(Tv), \exp_p(T\tilde{v}))}{T}.$$

- (2) let $f(x) = \frac{1}{2}d(x, p)^2$, show that f is strictly geodesically convex, i.e. for any non-trivial geodesic $\gamma : [0, 1] \rightarrow M$,

$$f(\gamma(t)) < (1 - t)f(\gamma(0)) + tf(\gamma(1)).$$

Theorem 97 (Cartan). Let (M, g) be a CH manifold, G a compact Lie group acting smoothly and isometrically on M , then G has a fixed point.

Theorem 98 (Cartan). Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature, then $\pi_1(M)$ is torsion free.

4.2. Spaces of negative sectional curvature

Proposition 99. Let (M, g) be a complete Riemannian manifold with non-positive sectional curvature and $\pi : \widetilde{M} \rightarrow M$ the universal covering. If $\tilde{\gamma} : \mathbb{R} \rightarrow \widetilde{M}$ is a common axis for all elements of $\text{Aut}_\pi(\widetilde{M})$, then M is not compact.

Exercise 100. let (M, g) be a closed riemannian manifold of dimension ≥ 2 with negative sectional curvature. let \widetilde{M} be its universal, $\Gamma = \pi_1(M)$ can be identified as a subgroup of $\text{Isom}(\widetilde{M})$ by deck transformations.

(1) show that there are $\gamma_1, \gamma_2 \in \pi_1(M)$ with different axes.

(2) show that the centralizer of $\Gamma \subset \text{Isom}(\widetilde{M})$ is trivial.

Theorem 101 (Preissmann). Let (M, g) be a compact Riemannian manifold with negative sectional curvature.

(1) Any non-trivial abelian subgroup of $\pi_1(M)$ is isomorphic to \mathbb{Z} .

(2) $\pi_1(M)$ is not abelian.

Corollary 102. Suppose M, N are compact smooth manifolds. Then $M \times N$ does not admit a Riemannian metric of negative sectional curvature.

Theorem 103. Let (M, g) be a compact Riemannian manifold with negative sectional curvature.

(1) (Byers) Any non-trivial solvable subgroups of $\pi_1(M)$ is isometric to \mathbb{Z} . In particular, $\pi_1(M)$ is not solvable.

(2) Any subgroup of $\pi_1(M)$ which contains a non-trivial abelian normal subgroup is isomorphic to \mathbb{Z} .

There are many further topics like Milnor's exponential-growth of fundamental group, $\text{CAT}(\leq 0)$ geometry, etc. To be added someday.

4.3. Spaces of non-negative curvature

Theorem 104 (Myers). Let (M^n, g) be a complete manifold. If

$$\text{Ric} \geq \frac{(n-1)g}{R^2}$$

then $\text{diam}(M, g) \leq \pi R$. In particular, M is compact and $\pi_1(M)$ is finite. (Cheng) If $\text{diam}(M, g) = \pi R$, then M is isometric to (S^n, g_{can}) .

Exercise 105. for $(\mathbb{R}^2, g_a = e^{a(x^2+y^2)}(dx \otimes dx + dy \otimes dy))$,

(1) compute the curvatures, conclude that it is Einstein;

(2) show that if $a \geq 0$, then it is complete;

(3) show that if $a < 0$, then it is not complete.

Theorem 106 (Synge). *Let (M, g) be a compact Riemannian manifold with positive sectional curvature.*

- (1) *If $\dim M$ is even and M is orientable, then M is simply connected;*
- (2) *If $\dim M$ is odd, then M is orientable.*

Corollary 107. *Let (M, g) be a compact Riemannian manifold with positive sectional curvature. If $\dim M$ is even and M is not orientable, then $\pi_1(M) = \mathbb{Z}/2\mathbb{Z}$.*

For example, $\mathbb{RP}^2 \times \mathbb{RP}^2, U(2), U(2)/O(2)$ do not admit a Riemannian metric with positive sectional curvature, in each case, the obstruction is the fundamental group.

Theorem 108 (Weinstein-Synge). *Let (M^n, g) be a compact Riemannian manifold with positive sectional curvature. Given an isometry $F : M \rightarrow M$ such that F preserve the orientation if n is even, changes the orientation if n is odd. Then F has a fixed point.*

Exercise 109. *show that there is no compact manifold that admits both a metric of positive definite ricci curvature and a metric of non-positive sectional curvature.*

4.4. Space forms

Theorem 110 (Riemann-Hopf-Killing). *Let (M, g) be a complete manifold with constant sectional curvature, then it is isometric to a Riemannian quotient of the form \widetilde{M}/Γ , where \widetilde{M} is one of the models spaces*

- (1) \mathbb{R}^n ,
- (2) $S^n(r)$,
- (3) $\mathbb{H}^n(r)$

and $\Gamma \subset \text{Isom}(\widetilde{M})$ is discrete and acts freely.

Here is a corollary of the Cartan-Ambrose-Hicks theorem.

Theorem 111. *Let (M, g_M) be connected, φ, ψ be two local isometries from M to (N, g_N) . If there exists some point $p \in M$ with $\varphi(p) = \psi(p)$ and $\varphi_{*,p} = \psi_{*,p}$, then $\varphi = \psi$.*

Corollary 112. *Let (M, g) be a connected simply-connected complete Riemannian manifold. The followings are equivalent.*

- (1) (M, g) *is of constant sectional curvature.*

(2) For every pair of points $p, q \in M$ and linear isometry $\Pi : T_p M \rightarrow T_p M$, there exists an isometry $\varphi : M \rightarrow M$ with $\varphi(p) = q$, $\varphi_{*,p} = \Phi$.

Corollary 113. Let (M, g) be a complete and of constant sectional curvature 1. If $\dim M = 2m$, then (M, g) is isometric to S^{2m} or \mathbb{RP}^{2m} .

For convenience, we write \mathbb{S}_k^n for the n -dimensional space form with constant sectional curvature k , and

$$\text{sn}_k(t) = \begin{cases} t & , \text{ if } k=0 \\ \frac{1}{\sqrt{k}} \sin \sqrt{k}t & , \text{ if } k > 0 \\ \frac{1}{\sqrt{-k}} \sinh \sqrt{-k}t & , \text{ if } k < 0 \end{cases} .$$

Theorem 114 (Jacobi fields in space forms). Let (M, g) be a Riemannian manifold with constant sectional curvature k , and γ a unit-speed geodesic. Then a normal Jacobi field J with $J(0) = 0$ is of the form

$$J(t) = a \text{sn}_k(t) E(t),$$

where a is constant, $E(t)$ is any unit parallel vector field with $\langle E, \gamma' \rangle = 0$.

Theorem 115. Let U be a geodesic ball around $p \in \mathbb{S}_k^n$, r the distance from p . Then on $U \setminus \{p\}$ under the normal coordinates,

$$g = dr^2 + \text{sn}_k^2(r) \widehat{g},$$

where \widehat{g} is the induced form on $U \setminus \{p\}$ by local trivialization.

Corollary 116 (an integral formula). Let U be a geodesic ball of radius b around $p \in \mathbb{S}_k^n$. If $f : U \rightarrow \mathbb{R}$ is a bounded integrable function, then

$$\int_U f \, dV_g = \int_{S^{n-1}} \int_0^b f \circ \Phi(\rho, \omega) \text{sn}_k(\rho)^{n-1} \, d\rho \, d\text{Vol}_{S^{n-1}},$$

where $\Phi : \mathbb{R}^+ \times S^{n-1} \rightarrow U \setminus \{p\}$, $(\rho, \omega) \mapsto \rho\omega$.

Remark 117. A more general integral formula applies to the Heintze-Karcher type inequality for embedded hypersurfaces in space forms.

Proposition 118. Let U be a geodesic ball of radius b around $p \in \mathbb{S}_k^n$, r the distance from p . Then

$$\mathcal{H}_r = \frac{\text{sn}'_k(r)}{\text{sn}_k(r)} \pi_r,$$

where π_r is the projection to the orthogonal complement of $\partial_r|_q$. Hence

$$\text{Hess } r = \text{sn}'_k(r) \text{sn}_k(r) \widehat{g},$$

and

$$\Delta_g r = (n-1) \frac{\text{sn}'_k(r)}{\text{sn}_k(r)}, \quad \Delta_g r^2 = 2 + 2(n-1)r \cdot \frac{\text{sn}'_k(r)}{\text{sn}_k(r)}.$$

5. Comparison theorems of curvatures

5.1. Rauch comparison

RAUCH COMPARISON AND COROLLARIES

Theorem 119 (Rauch comparison). *Let $(M, g), (\widetilde{M}, \widetilde{g})$ be two Riemannian manifolds with $\dim M \leq \dim \widetilde{M}$. Suppose that $\gamma, \widetilde{\gamma} : [0, l] \rightarrow M, \widetilde{M}$ are unit-speed geodesics, and*

(1) for any t and any planes $\Sigma, \widetilde{\Sigma} \subseteq T_{\gamma(t)}M, T_{\widetilde{\gamma}(t)}\widetilde{M}$ with $\gamma'(t), \widetilde{\gamma}'(t) \in \Sigma, \widetilde{\Sigma}$, the sectional curvatures satisfy

$$K_{\Sigma}(\gamma(t)) \leq \widetilde{K}_{\widetilde{\Sigma}}(\widetilde{\gamma}(t)),$$

(2) $\widetilde{\gamma}(0)$ has no conjugate points along $\widetilde{\gamma}|_{(0, l]}$.

Then for any Jacobi fields J, \widetilde{J} along $\gamma, \widetilde{\gamma}$ with initial conditions $J(0) = c\gamma'(0), \widetilde{J}(0) = c\widetilde{\gamma}'(0), |J'(0)| = |\widetilde{J}'(0)|, g(J'(0), \gamma'(0)) = \widetilde{g}(\widetilde{J}'(0), \widetilde{\gamma}'(0))$, we have $|\widetilde{J}| \leq |J(t)|$ for all $t \in [0, l]$.

A useful case is when $(\widetilde{M}, \widetilde{g})$ is the space form.

Corollary 120 (Jacobi field comparison). *Let (M, g) be a complete Riemannian manifold, $p \in M, U = M \setminus \text{cut}(p)$. Let $\gamma : [0, b] \rightarrow U$ be a unit-speed geodesic with $\gamma(0) = p$ and J be any normal Jacobi field along γ with $J(0) = 0$. Then*

(1) if the sectional curvature $K_M \leq k$, then

$$|J(t)| \geq \text{sn}_k(t)|J'(0)|$$

(2) if the sectional curvature $K_M \geq k$, then

$$|J(t)| \leq \text{sn}_k(t)|J'(0)|$$

for all $t \in [0, b_1]$, where $b_1 = \begin{cases} b & , \text{ if } k \leq 0 \\ \min\{b, \pi R\} & , \text{ if } k = \frac{1}{R^2} > 0 \end{cases}$.

Corollary 121 (conjugate comparison). *Let (M, g) be a complete Riemannian manifold with sectional curvature $K_M \leq k$.*

- (1) If $k \leq 0$, then M has no conjugate points along any geodesic.
- (2) If $k = \frac{1}{R^2} > 0$, then there is no conjugate point along any geodesic shorter than πR .

Corollary 122. Let (M, g) be a complete Riemannian manifold. Suppose $0 < C_1 \leq K_M \leq C_2$, let γ be any geodesic in M and l be the distance along γ between two consecutive conjugate points on γ , then

$$\frac{\pi}{\sqrt{C_2}} \leq l \leq \frac{\pi}{\sqrt{C_1}}.$$

In particular, \exp_p has no critical points on $B\left(0, \frac{\pi}{\sqrt{C_2}}\right)$.

INJECTIVITY RADIUS

The following result can be proved using Corollary 122, [Exercise 92](#).

Theorem 123 (Klingenberg's injectivity radius estimate). Let (M, g) be a compact Riemannian manifold with $K_M \leq C$ where $C > 0$, set

$$l(M, g) = \int \{L(\gamma) \mid \gamma \text{ is a smooth closed geodesic}\}.$$

Then either $\text{inj}(M) \geq \frac{\pi}{\sqrt{C}}$ or $\text{inj}(M) = \frac{l(M, g)}{2}$.

5.2. Hessian and Laplacian comparisons

Theorem 124 (Hessian comparison). Let $(M, g), (\widetilde{M}, \widetilde{g})$ be two Riemannian manifolds with the same dimension, $p \in M, \widetilde{p} \in \widetilde{M}$, $U = M \setminus \text{cut}(p), \widetilde{U} = \widetilde{M} \setminus \text{cut}(\widetilde{p})$, r, \widetilde{r} the distance from p, \widetilde{p} . Suppose $\gamma, \widetilde{\gamma} : [0, b] \rightarrow U, \widetilde{U}$ are two unit-speed geodesics with $\gamma(0) = p, \gamma(b) = q, \widetilde{\gamma}(0) = \widetilde{p}, \widetilde{\gamma}(b) = \widetilde{q}$. If for any t and any planes $\Sigma, \widetilde{\Sigma}$, the sectional curvatures satisfy

$$K_\Sigma(\gamma(t)) \geq \widetilde{K}_\Sigma(\widetilde{\gamma}(t)),$$

then for any vectors $X \in T_q M, \widetilde{X} \in T_{\widetilde{q}} \widetilde{M}$ with $|X| = |\widetilde{X}| = 1$ and $X \perp \gamma'(b), \widetilde{X} \perp \widetilde{\gamma}'(b)$,

$$\text{Hess } r(X, X) \leq \text{Hess } \widetilde{r}(\widetilde{X}, \widetilde{X}).$$

In particular,

$$\Delta_g r|_{\gamma(t)} \leq \Delta_{\widetilde{g}} \widetilde{r}|_{\widetilde{\gamma}(t)}.$$

Moreover, if the identity holds for all t , then $K_\Sigma(\gamma(t)) = \widetilde{K}_{\widetilde{\Sigma}}(\widetilde{\gamma}(t))$.

Theorem 125 (Laplacian comparison). *Let (M, g) be a complete Riemannian manifold, $p \in M$, $U = M \setminus \text{cut}(p)$, r the distance from p . If*

$$\text{Ric} \geq (n-1)kg$$

for some constant k , then

$$\Delta_g r \leq (n-1) \frac{\text{sn}'_k(r)}{\text{sn}_k(r)}$$

on $U \setminus \{p\}$. Moreover, if the identity holds on $U \setminus \{p\}$, then (M, g) has constant sectional curvature k .

5.3. Volume comparison

VOLUME COMPARISON

Write $B(p, \delta)$ for the metric ball centered at p , g_k the metric with constant sectional curvature k on $B(p, \delta) \setminus \{p\}$.

Theorem 126 (Bishop-Gromov). *Let (M, g) be a complete Riemannian manifold with*

$$\text{Ric} \geq (n-1)kg,$$

for some constant k . Then the volume ratio

$$\frac{\text{Vol}_g(B(p, \delta))}{\text{Vol}_{g_k}(B(p, \delta))}$$

is non-increasing for $\delta \in \mathbb{R}^+$, and

$$\lim_{\delta \rightarrow 0} \frac{\text{Vol}_g(B(p, \delta))}{\text{Vol}_{g_k}(B(p, \delta))} = 1.$$

Moreover, if there exists $0 < \delta_1 < \delta_2 \leq \delta$ with

$$\frac{\text{Vol}_g(B(p, \delta_1))}{\text{Vol}_{g_k}(B(p, \delta_1))} = \frac{\text{Vol}_g(B(p, \delta_2))}{\text{Vol}_{g_k}(B(p, \delta_2))}$$

then $\text{Vol}_g(B(p, \delta)) = \text{Vol}_{g_k}(B(p, \delta))$ for $\delta \in [0, \delta_2]$ and g is of constant sectional curvature on $B(p, \delta_2)$.

Theorem 127 (Zhu). *Let (M, g) be a complete Riemannian manifold with*

$$\text{Ric} \geq (n-1)kg,$$

for some constant k . Then for $0 \leq \delta_1 < \min\{\delta_2, \delta_3\} \leq \max\{\delta_2, \delta_3\} < \delta_4$,

$$\frac{\text{Vol}_g(B(p, \delta_4)) - \text{Vol}_g(B(p, \delta_3))}{\text{Vol}_{g_k}(B(p, \delta_4)) - \text{Vol}_{g_k}(B(p, \delta_3))} \leq \frac{\text{Vol}_g(B(p, \delta_2)) - \text{Vol}_g(B(p, \delta_1))}{\text{Vol}_{g_k}(B(p, \delta_2)) - \text{Vol}_{g_k}(B(p, \delta_1))}.$$

Proposition 128 (Gromov). *Let (M, g) be a complete Riemannian manifold of dimension n with $\text{Ric} \geq (n-1)kg$ for some constant $k > 0$. Then*

$$\text{Vol}_g(M) \leq \text{Vol}_{g_k} \left(S^n \left(\frac{1}{\sqrt{k}} \right) \right).$$

If the equality holds, then (M, g) is isometric to $S^n \left(\frac{1}{\sqrt{k}} \right)$.

Proposition 129 (Cheng). *Let (M, g) be a complete Riemannian manifold of dimension n with $\text{Ric} \geq (n-1)kg$ for some constant $k > 0$. If $\text{diam } M = \frac{\pi}{\sqrt{k}}$, then (M, g) is isometric to $S^n \left(\frac{1}{\sqrt{k}} \right)$.*

Combining the divergence theorem, Theorem 66, Proposition 129, we can show the following results.

Theorem 130. *Let (M, g) be a compact orientable Riemannian manifold of dimension $n \geq 2$. Suppose $\text{Ric} \geq \lambda g > 0$.*

(1) (Lichnerowicz) *The first non-zero eigenvalue λ_1 of the Hodge laplacian $\Delta = \text{dd}^* + \text{d}^* \text{d}$ satisfies*

$$\lambda_1 \geq \frac{n}{n-1} \lambda.$$

(2) (Obata) *If $\lambda_1 = \frac{n}{n-1} \lambda$, then (M, g) is isometric to the round sphere $\left(S^n \left(\sqrt{\frac{n-1}{\lambda}} \right), g_{\text{can}} \right)$.*

Theorem 131 (Bishop-Yau). *Let (M, g) be a complete non-compact Riemannian manifold of dimension n with $\text{Ric} \geq 0$. Then*

$$c_n \text{Vol}_g(B(p, 1))r \leq \text{Vol}_g(B(p, r)) \leq \text{Vol}_{g_1}(B(p, r)) = \frac{\text{Vol}(S^{n-1})}{n} r^n,$$

for some positive constant c_n depending only on n and large r .

5.4. The splitting theorem

Theorem 132 (Cheeger-Gromoll). *Let (M, g) be a complete Riemannian manifold of dimension n with $\text{Ric } g \geq 0$. If there is a geodesic line in M , then (M, g) is isometric to $\mathbb{R} \times N, g_{\mathbb{R}} \oplus g_N$, where $\text{Ric } g_N \geq 0$.*

Corollary 133. *Let (M, g) be a complete Riemannian manifold with $\text{Ric} \geq 0$.*

(1) *(M, g) is isometric to $(\mathbb{R}^k \times N, g_{\mathbb{R}^k} \oplus g_N)$, where N does not contain a geodesic line and $\text{Ric } g_N \geq 0$.*

(2) *The isometry group splits*

$$\text{Isom}(M, g) \cong \text{Isom}(\mathbb{R}^k, g_{\mathbb{R}^k}) \times \text{Isom}(N, g_N).$$

Definition 134 (Bieberbach group). *A subgroup B_n of $\text{Isom}(\mathbb{R}^n, g_{\text{can}}) = O(n) \rtimes \mathbb{R}^n$ is a Bieberbach group if it acts freely on \mathbb{R}^n and \mathbb{R}^n/B_n is a compact manifold.*

Theorem 135 (structure of manifolds with $\text{Ric} \geq 0$). *Let (M, g) be a compact Riemannian manifold with $\text{Ric} \geq 0$, and $\pi : (\widetilde{M}, \widetilde{g}) \rightarrow (M, g)$ its universal covering with pull-back metric.*

(1) *There exists some integer $k \geq 0$ and a compact Riemannian manifold (N, g_N) with $\text{Ric } g_N \geq 0$ such that $(\widetilde{M}, \widetilde{g})$ is isometric to $(\mathbb{R}^k \times N, g_{\mathbb{R}^k} \oplus g_N)$.*

(2) *The isometry group splits*

$$\text{Isom}(M, g) \cong \text{Isom}(\mathbb{R}^k, g_{\mathbb{R}^k}) \times \text{Isom}(N, g_N).$$

(3) *There exists a finite normal subgroup G of $\text{Isom}(N, h)$, a Bieberbach group B_k and an exact sequence*

$$0 \rightarrow G \rightarrow \pi_1(M) \rightarrow B_k \rightarrow 0.$$

Corollary 136. *Let (M, g) be a compact Riemannian manifold with $\text{Ric} \geq 0$, and $\pi : (\widetilde{M}, \widetilde{g}) \rightarrow (M, g)$ its universal covering with pull-back metric.*

(1) *If \widetilde{M} is contractible, then $(\widetilde{M}, \widetilde{g})$ is isometric to $(\mathbb{R}^n, g_{\mathbb{R}^n})$ and (M, g) is flat.*

(2) *If $(\widetilde{M}, \widetilde{g})$ does not contain a line, then $\pi_1(M)$ is finite and $b_1(M) = 0$.*

(3) *If $\pi_1(M)$ is finite, then \widetilde{M} is compact and $b_1(M) = 0$.*

Corollary 137. *Let (M, g) be a compact Riemannian manifold with $\text{Ric} \geq 0$. If there exists some point $p \in M$ such that $\text{Ric}_p > 0$, then $\pi_1(M)$ is finite and $b_1(M) = 0$.*

Corollary 138. *Let (M, g) be a compact Riemannian manifold with $\text{Ric} \geq 0$, and $\dim M = n$. Then $b_1(M) \leq n$. Moreover, $b_1(M) = n$ iff (M, g) is flat.*

Corollary 139. *$S^3 \times S^1$ can not admit Ricci flat metrics.*

Exercise 140. suppose (M^n, g) is compact with $b_1 = k$. if $\text{Ric} \geq 0$, show that the universal covering splits:

$$(\widetilde{M}, g) = (N, h) \times (\mathbb{R}^k, g_{\mathbb{R}^k}).$$

give an example where $b_1 < n$ and $(\widetilde{M}, g) = (\mathbb{R}^n, g_{\mathbb{R}^n})$.

6. Gathering important results

- (1) Koszul formula
- (2) for 3-dim manifolds, Einstein implies CSC.
- (3) volume expression of the Laplacian {see 10}
- (4) symmetry and orthogonality of the 2nd fundamental form
- (5) Gauss' lemma {see 24}
- (6) Hopf-Rinow theorem {see 30}
- (7) local expansion of metric {see 33}
- (8) properties of the radial vector field and corollaries {see 36}
- (9) expression of d^* {see 44}
- (10) divergence theorem {see 1.8}
- (11) Ricci identity {see 57}
- (12) 2nd Bianchi identity {see 60}
- (13) Schur's lemma {see 61}
- (14) Bochner formula for smooth functions {see 66}
- (15) Bochner formula for Killing vector fields {see 68}
- (16) Bochner formula for harmonic 1-forms {see 73}
- (17) *Bochner formula for smooth maps {see 75}
- (18) 1st and 2nd variation of the energy
- (19) characterization of the Jacobi field {see 84}
- (20) index theorem and topology
- (21) Cartan-Hadamard theorem {see 93}

- (22) characterization of CH manifolds {see 95}
- (23) Cartan's fixed point and torsion free theorem {see 97, 98}
- (24) Preissmann theorem {see 101}
- (25) Byers theorem {see 103}
- (26) no product manifold admits a metric of negative sectional curvature
- (27) Myers theorem {see 104}
- (28) Synge theorem {see 106}
- (29) Weinstein-Synge theorem {see 108}
- (30) Riemann-Hopf-Killing theorem {see 110}
- (31) properties of space of CSC
- (32) Rauch comparison and corollaries
- (33) Hessian and Laplacian comparisons
- (34) volume comparison
- (35) proof of Cheng's rigidity theorem
- (36) Lichnerowicz-Obata eigenvalue inequality and rigidity
- (37) Cheeger-Gromoll splitting theorem and corollaries
- (38) structure of manifolds with $\text{Ric} \geq 0$.

A. Isometry and local isometry

Definition 141 ((local) isometry). *Let $\varphi : (M, g_M) \rightarrow (N, g_N)$ be smooth.*

- (1) *φ is called a local isometry if $\varphi_{*,p} : T_p M \rightarrow T_{\varphi(p)} N$ is a linear isometry for every $p \in M$, or equivalently, $g_M = \varphi^* g_N$.*
- (2) *φ is called an isometry if φ is surjective and preserve the distance.*

List of properties:

- if φ is a local isometry, then φ is totally geodesic;
- for smooth curve $\gamma : [a, b] \rightarrow M$ and $\tilde{\gamma} = \varphi \circ \gamma$, γ is a geodesic iff $\tilde{\gamma}$ is a geodesic.

Theorem 142. Let $\varphi : (M, g_M) \rightarrow (N, g_N)$ be smooth and bijective. The followings are equivalent

- (1) φ is an isometry.
- (2) φ is a diffeomorphism and a local isometry.
- (3) φ is a diffeomorphism and for every smooth curve $\gamma : [a, b] \rightarrow M$,

$$\text{length}(\varphi \circ \gamma) = \text{length}(\gamma).$$

Exercise 143. prove the theorem above.

B. Covering maps and transformations

RIEMANNIAN COVERING MAPS

Definition 144 (Riemannian covering map). A smooth covering map $\pi : (\widetilde{M}, \widetilde{g}) \rightarrow (M, g)$ is a Riemannian covering map if it is a local isometry.

Theorem 145. Suppose $\pi : (\widetilde{M}, \widetilde{g}) \rightarrow (M, g)$ is a local isometry.

- (1) If $(\widetilde{M}, \widetilde{g})$ is complete, then π is a Riemannian covering map and (M, g) is complete.
- (2) If π is a covering map, then (M, g) is complete iff $(\widetilde{M}, \widetilde{g})$ is complete.

DECK TRANSFORMATIONS

Definition 146 (deck transformation). Let $\pi : \widetilde{M} \rightarrow M$ be the universal covering of M . A deck transformation $F : \widetilde{M} \rightarrow \widetilde{M}$ is a homeomorphism such that $\pi \circ F = F$, denote by $\text{Aut}_\pi(\widetilde{M})$ the set of deck transformations

Theorem 147. (1) $\pi_1(M) \cong \text{Aut}_\pi(\widetilde{M})$;

- (2) $\text{Aut}_\pi(\widetilde{M})$ acts smoothly freely and properly on \widetilde{M} ;
- (3) $\text{Aut}_\pi(\widetilde{M})$ acts transitively on each fiber of π .

C. Axes, rays and lines

FREE HOMOTOPY CLASS

Definition 148. Two loops $\gamma_0, \gamma_1 : [0, 1] \rightarrow M$ are said to be freely homotopic if they are homotopic through closed paths, i.e. there exists a homotopy $H(s, t) : [0, 1] \times [0, 1] \rightarrow M$ such that

$$H(0, t) = \gamma_0(t), H(1, t) = \gamma_1(t) \text{ and } H(s, 0) = h\mathcal{H}(s, 1).$$

AXES

Definition 149 (axis of an isometry). *Let (M, g) be complete, $F : M \rightarrow M$ be an isometry. A geodesic $\mathbb{R} \rightarrow M$ is called an axis of F if $F \circ \gamma$ is a non-trivial translation of γ , i.e.*

$$F(\gamma(t)) = \gamma(t + c)$$

for some constant $c \neq 0$. F is axial if it has an axis.

Lemma 150. *Let (M, g) be complete, F be an isometry. If $\delta_F(p) = d(p, F(p))$ has a positive minimum, then F has an axis.*

Theorem 151. *Let (M, g) be a compact Riemannian manifold, $F : \widetilde{M} \rightarrow \widetilde{M}$ be a non-trivial deck transformation of $\pi : \widetilde{M} \rightarrow M$.*

- (1) δ_F has a positive minimum and $\delta_F \geq 2 \operatorname{inj}(M)$, thus F is axial.
- (2) The axis corresponding to this minimum is mapped under π to a closed geodesic, whose length is minimal in its free homotopy class.

Exercise 152. *suppose (M, g) is a compact connected riemannian manifold. every non-trivial free homotopy class in M is represented by a closed geodesic that has minimum length among all admissible loops in the given free homotopy class.*

GEODESIC RAYS

Definition 153 (geodesic ray). *A geodesic ray is a unit-speed geodesic $\gamma : [0, \infty) \rightarrow M$ such that $d(\gamma(s), \gamma(t)) = |s - t|$ for any $s, t \geq 0$.*

Lemma 154. *Let (M, g) be a complete Riemannian manifold. The followings are equivalent.*

- (1) M is non-compact.
- (2) For any $p \in M$, there is a geodesic ray starting from p .

Proposition 155 (definition of Busemann function). *Let (M, g) be a complete Riemannian manifold, $\gamma : [0, \infty) \rightarrow M$ be a geodesic ray starting from a point p . Define*

$$b_\gamma^t(x) = d(x, \gamma(t)) - t = d(x, \gamma(t)) - d(\gamma(0), \gamma(t))$$

then $b_\gamma^t(x)$ is non-increasing for t . Define the Busemann function by

$$b_\gamma(x) = \lim_{t \rightarrow \infty} b_\gamma^t(x).$$

List of properties:

- $|b_\gamma^t(x)| \leq d(x, \gamma(0));$
- $|b_\gamma^t(x) - b_\gamma^t(y)| \leq d(x, y).$

Exercise 156. compute the busemann functions on the upper half plane \mathbb{H}^2 with canonical metric of constant sectional curvature -1 .

GEODESIC LINES

Definition 157 (geodesic line). A geodesic line is a unit-speed geodesic $\gamma : \mathbb{R} \rightarrow M$ such that $d(\gamma(s), \gamma(t)) = |s - t|$ for any $s, t \in \mathbb{R}$.

Lemma 158. Let (M, g) be a connected complete non-compact manifold. If M contains a compact subset K such that $M \setminus K$ has at least two un-bounded components, then there is a geodesic passing through K .

References

[DCFF92] Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*, volume 2. Springer, 1992.

[Jos08] Jürgen Jost. *Riemannian geometry and geometric analysis*, volume 42005. Springer, 2008.

[Pet06] P Petersen. Riemannian geometry. *Graduate Texts in Mathematics/Springer-Verlalg*, 2006.

[Wal09] Thomas Walpuski. Riemannian geometry ii (lecture notes), 2009.