Riemannian geometry: a note for reviewing
2024 autumn

This is a re-arranged note for the course on Riemannian geometry
given by professor Yang, which aims for a quick reviewing of the basic
computations and the main results. The gist lies in the exercises. Some

good references are [Pet06, Jos08, DCFF92, Wal09]. Many related topics
are to be appended in the future.
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1. Basic concepts and computations

1.1. Connections and curvatures

Definition 1 (connection). V : TM x E — E, which is linear on TM,
a derivation for E, where E — M 1is a bundle.

Definition 2 (Christoffel symbol). V o e4 = FﬁleB.
ozt
Definition 3 (curvature tensor). R: TM @ TM @ E® — F,
R(X, Y)e = VXV}/G — VYVXG — V[Xy]e

As for a Riemannian manifold (M, g), we consider usually Levi-Civita
connection, and several special curvature tensors.

Definition 4 (Levi-Civita connection). V : TM x TM — TM, a con-
nection S.t.

(1) XY, Z) = (XVy, Z) + (Y, VxZ);

(2) VyY — VyX = [X,Y].

Definition 5 (curvature tensors and operator).

(1) R(X,Y, Z,W) = (R(X,Y)Z,W), R = Rijnde’ @ do/ ® dz* @ da';
(2) sectional curvature: K,(=sec(X,Y)) = %, o =span{X,Y};
(3) Ricci curvature: Ric;; = gklRiklj;

(4) Scalar curvature: S = g% Ricy;.

(5) curvature operator: R : NXT'M — N*TM, such that g(R(XAY), Z A
W)=R(X,Y,Z,W).

List of properties:

o symmetry of R and first Bianchi;

« independence of basis for K,;
 independence of planes for K, iff being flat;
o for 3-dim manifolds, CRC implies CSC.

Definition 6 (trace definition of Ricci). Ric(v, w) = tr(z — R(x,v)w).
Taking an ONB of T'M,

(1) Ric(v) :=>" R(v, e;)e;;



(2) Ric(v, w) = g(Ric(v), w);

(3) for v = e, Ric(v,v) = > R(v,e;,e;,v) = 1 5sec(v,e;).
Exercise 7. (1) show the Koszul formula;

(2) calculate Ffj, Rijri;

(3) show that Rijkl =

1 [ 9%gj 0 gin 9%gul *gjk

— . e rere —1ire ).
2 <(9::r;18$k’ drioal  QwioaF &L’Zﬁxl) 9Tl = Lal)

(4) compute the curvatures of S™, H?;

(5) compute the curvatures of

x'xd \

(6) compute the curvatures of (R?, e +¥°)(dz @ dz + dy ® dy)).
Exercise 8. (1) what’s the relation of curvatures between g and k - g;
(2) prove the integral formulae for Ric and S:
(a) for unit vector v, and S+ the set of unit vectors orthogonal to v,
Ric,(v,v) = \/(;11(;5”1—2) /10653 sec(v,w)dVy.
(b) for UT,M = S"1,

n

Sy = / Ric,(v,v)dS.
Sn—1

Wp—1

(3) let (M3, g) be Einstein, show that (M, g) is of CSC.

(4) (hard, warped product) consider (N" 71, gy), Ric = Z—ﬁ)\gN,)\ < 0,
find a function p : R — (0,00), such that (M", g) = (R x N,dr? +
p’gn) becomes an Einstein metric with Ric = \g.

1.2. Hessian and scalar Laplacian
Consider smooth function f : (M, g) — R.

Definition 9 (Hessian and saclar Laplacian).



(1) Hess f := V2f = Vdf, i.e.
Hess f(X,Y) =g(VxV[fY)=(Vxdf)=XY[f—-VxY/f.
the Hessian operator is given by Hess f(X,Y) = (H(X),Y).
(2) A,f := trHess f = g" Hess f;;.
Locally, Hess f;; = Hess fj;, thus Hess f is a symmetric 2-form.

Theorem 10 (volume expression of the Laplacian).

1 0 of

Ayf = —————|g"+/detg
of Vdet g Oxt < I o J)

Exercise 11. (1) for dVol, = Jdetgdat A -+ A da®, compute ddetg

oxt
810gdietg and (“)\/d(jtg show
ox oxt 7’

0 10logdet g
—d Vol, = -——————=d Vol,.
oz 9T g

(2) prove Theorem 10.
(3) show that

Hess o(f) = ¢” df* + ' Hess f.
1.3. Pull-back operation
f: M — N induces f, : TM — f*T'N, for immersion, f*I'N C T'N.
™ —L TN S L TN
M —L 5 (N,h)

Theorem 12 (definition of pull-back connection and metric). There ez-
ists compatible pull-back connection and metric defined by

(1) V 2€4=f ( V2. A) = J (%Q?FSA(]C)QB);

(2)g=["h, i.e. g(€a,€p) = hlea,ep).
Locally, drop the hats,

6f0‘ 0
(93:2 (f)ﬁ_

— _orar,
" (9 prEitl 8x3 oxt OxJ o

<l>

0 _
Oy

9
dat




Exercise 13. (1) show the well-defined-ness and compatibility.
(2) show that ﬁiﬂ(g = 20 Ropqs-

O 9xd

1.4. The 2nd fundamental form

The 2nd fundamental form, which generalize the Hessian, is defined to
indicate the deviation under pull-back.

GENERAL CASE

Definition 14 (2nd fundamental form). B € I'(M, T*"M@T*M® f*T'N),
B(X,Y) = Vx Y — f.VxY.

Locally, B} = Bj,

2, thus B is a symmetric (2,1)-tensor, as a result,

VxfY = Vyf.X = £.VxY - LVyX = £[X,Y].
Exercise 15. (1) compute the local expression of B.

(2) f:(M,g9) — (N,h), and V is the affine connection on T"M @ f*T'N
induced by VM VN then B = Vdf, where df is regarded as a smooth
section in D(M,T*M @ f*TN).

THE CASE OF RIEMANNIAN IMMERSION

Given an immersion f : M — (M,q,V), f*TM C TM = f*TM &
T+M. We write (g,V), (g, V) for the induced structures on f*T'N, T M.
List of properties:

_ofvoff— .
* 9ij = 37 979083

« BeT(M,T*M ® T*M © T*M), ie. §(B(X,Y),f.Z) = 0 for any
XYY € I'(M,TM). Equivalently (drop of push-forward),

GV .Y, £.2) = §(f.VxY, [.Z) = g(VxY, Z).

o (Gauss-Codazzi) for any X, Y, Z W € I'( M, TM),
R(X,Y,Z, W)~ R(X,Y, f.Z, f.W)

=§(B(X,W),B(Y,Z)) - §(B(X, Z), B(Y,IV)).

Definition 16 (Weingarten map). X, Y € I'(M,TM),n € T(M, T+ M),
g(Wn(X),Y) = BU(Xa Y) = g(B(X7 Y)an)

Remark 17. Take (]\/4\, g) = (RN gpn), we shall get Gauss’ Theorema
Egregium, especially for the immersion of a surface into R3.
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Exercise 18. (1) show the orthogonal relation with(out) the rank theo-
rem.

(2) consider immersion of a surface into R3, with unit normal vector n,
write the expression of first and second fundamental form, B,, and
Gauss’ Theorema Egregium:

det I1 R(X,Y,Y, X)

K = =sec(X,Y) = :
det ( ) gp(X, X)gp(Y,Y) — gp(X,Y)?

(8) show that Ricgp = Kgp, S = 2K.

(4) consider S™ — R"™ and the local parametrization

v D — U;Jrl C Rn+177(u) = <U’17' o 7U’n7 V | ‘UP)
where D = {u | |u| < 1}.

(a) compute gp = V*Gean;
(b) compute the second fundamental form;

(¢) compute the mean curvature H = + tr, B.

Exercise 19. let (M,g) be a complete riemannian manifold. suppose
f: M — R is a smooth function with

IVfl=1, Hessf =0.
set N = f71(0),h = g|n, show that (N, h) is a totally geodesic submani-
fold of (M, g).
1.5. Parallel transports, geodesics and exponential maps
PARALLEL TRANSPORT

Let v: I — (M, g) be a smooth curve.

Proposition 20 (definition of parallel transport). For any v € T4, )M,
there exists a unique vector field Ve I'(I,v*TM) (along ) with

(1) V(to) = v; (2) VV = 0.

Define the parallel transport along v by Py, 1~ =V (t), for any to,t € 1.
List of properties: the gist is a take a parallel frame.

d Pt27t377 © PtlatQa’Y - Pt17t3777 Pt,t{}/ - ld
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o Py TygM — T,;)M is a linear isometry for any s,t € I;

o F(t,(s,v)) = (t, Pss~(v)) is a smooth function;

« LD, (V(1) = Pt,tm(ﬁ‘/(t)), for any vector field V' along 7.
Exercise 21. prove the properties above.

(GEODESIC AND EXPONENTIAL MAP

Proposition 22 (definition of geodesic). For any p € M,v € T,M,t; €
R, there is an open interval I > ty and a smooth curve v : I — M with

(1) 7(to) = p,7(t0) == (vep)lty = v;

(2) Vv =0 along I.

The curve satisfying (2), i.e.

d d*" 9  dy'dy, 0
< . Tk ()=
@ an T ar a0 g

is called a geodesic along I. Up to a shift of position, we suppose v(0) =
p,7'(0) = v and write 1,,, for the mazimal ezistence interval of .

VY =V =0,

List of properties:

o |7/| is a constant for the geodesic 7;

e Yeuo(t) = Y(ct), i.e. invariant under rescaling.
© Boq,(v) = 7,(t).

Definition 23 (exponential map). Write £, = {v|1 € I,,}, the expo-
nential map exp, : €, — M 1is defined by

expy(v) = (1),
where v, is the geodesic with v(0) = p,7'(0) = v.
List of properties:
o exp,(tv) = Y(t), for t € I,,;
o exp is smooth on € = {(p,v) |v € &,};
e exp is a local diffeomorphism, since the differential
exp,o : To(T,M) — T,M

is the identity map.



o set B.(p) = {exp,(v)||v] < r}, then exp|p () is a diffeomorphism.
The injectivity radius of p is

inj,(M) := sup{r | exp |p,(y) is diffeomorphic},
and inj(M) := inf, inj,(M).
Exercise 24. prove the following Gauss’ lemma: fix p € M,r < inj,(M)
and I an open interval. suppose
(1) w(s): I — T,M satisfies |w(s)| =r and
(2) a(t,s) == exp,(tw(s)) for (t,5) € R x I,tw(s) € &,.

then
Qo 2 Qa 2 =0
0s’ ot/

Exercise 25. (1) let M be a smooth manifold and ¥V any connection on
TM. We define the curvature endomorphism by

R(X,Y)Z = VxVyZ — VyVxZ — VixyZ

then V is said to be flat if R(X,Y)Z = 0. show that the followings
are euqivalent.

(a) V is flat;

(b) for every point p € M, there exists a parallel local frame defined
on a neighborhood of p;

(c) for all p,q € M, parallel transport along an admissible curve
segment from p to q depends only on the path-homotopy class.

(d) parallel transport around any sufficiently small closed curve is the
tdentity, i.e. for every p € M, there exists a neighborhood U of
p such that if v : [a,b] — U is an admissible curve in U starting
and ending at p, then Py : TyM — T,M 1s the identity map.

(2) a vector field X is said to be parallel if VX = 0.

(a) let p € R",v € T,R", show that there is a unique parallel vector
field Y on R™ such that Y, = v.

(b) let X(p,0) = (sinp cosf,sin psinb, cos ) be the spherical coor-
dinate of an open subset U C S?, let X, = X*%,Xg = X*%.
compute Vx,X,, Vx X, and conclude that X, is parallel along
the equator and along each meridian 6 = 6.

9



(c) let p = (1,0,0) € S%, show that there is no parallel vector field
W on any neighborhood of p in S* such that W, = X,|,.

(d) conclude that no neighborhood of p in (S?, g) is isometric to an
open subset of (R?, gean).

1.6. Completeness
COMPLETENESS OF MANIFOLDS AND VECTOR FIELDS

A riemannian manifold is naturally a metric space under

dyfp.q) = inf length(y) = inf [ 1]
vel vel
where £ is the collection of piecewise smooth curves joining p, q.
Using Gauss’ lemma (Exercise 24), one can show
Proposition 26. Fiz p € M,r <inj,(M), then for any v with |v| <,
dg(p7 epr(U)) T |U|
Thus the shortest curve joining p, ¢ must be a geodesic.

Definition 27 (completeness of a manifold). (M, g) is (geodesically)
complete if exp,(v) is well-defined for all p € M,v € T,M. Or equiva-
lently, all the geodesics are well-defined on R.

Definition 28 (completeness of a vector field). X s complete if it has
a global flow, i.e. the integral curve extends to R.

Exercise 29. (1) let (M,g) be complete, V' a smooth vector field with
V| < C, show that V' is complete.

(2) let (M, g) be complete, show that every Killing vector field is complete.
HoPF-RINOW THEOREM

Theorem 30 (Hopf-Rinow). The followings are euqivalent

(1) (M, g) is geodesically complete;

(2) there exists some p € M such that exp, is well-defined on T,M;

(3) every closed and bounded subset of M is compact.

(4) (M,d,) is metrically complete.

Exercise 31. (1) every compact manifold is complete;
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(2)if (M, q1),(M,gs) satisfies g1 = g2 and (M, gs) is complete, then
(M, g1) is also complete.

(3) a riemannian manifold is said to be homogeneous if the isometry
group acts transitively. show that the homogeneous manifolds are
complete.

(4) let O C (M, g) be an open subset, show that if (O, g) is complete,
then O = M.

(5) let (M, g) = (R x N,dr? + p?gn) where p : R — (0,00), (N, gy) is
complete. show that (M, g) is complete.

(6) show that any riemannian manifold (M, g) admts a conformal change
(M, X%g) that is complete.

1.7. Normal coordinates

Definition 32 (normal coordinates). Take an ONB of T,M, and define
B :R" — T,M,r — r'e;, which is an isometry. The (reversed) map

p=Bloexp,' : U—T,M—R"
gives () = (r' o ), the normal coordinates centered at p.
List of properties:

_ 0 —_np-1, _ 0 0
» = 57 and @.(e;) = B~ e; = 57, 50 55

)
[ ) gp*%
* gij(p) = 5z'j;

e forv= viaai
X

p = €Ei;

P?fy;(t) - tvz7
« T}, =0, thus Lgijlp = 0.
Theorem 33 (local expansion of metric). Under any normal coordinates,

1 1

gij = 0ij — §Rz’m\p$kl’l +O0(|z*), ¢7 =8;+ gRisz\pCEkxl +O(|z),

and also,

= = —(Rijlp + Rikjlp)-

1. i,.J
detg =1— 3 Ricy; [pa'a’ + O(|z[*), Ozkal 3

Exercise 34. show for small r that

(1) Vol(B(p, ) = wur™ (1= giiyr® + O(r) )

6(n+2)
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(2) Axea(S(p,r) = nw,r" 1 (1= 502+ O(r%) ).
Consider the distance function r(q) := dy(p, q) on U = M\ cut(p).
List of properties:
e 7 is continuous and is smooth on U\{p};

» 7(q) = exp, (q);

o Vr =g72 L is a smooth vector field on U\{p}.

In normal coordinates, recall that /(t) = 2’0y, (t) = tv’ for v = v’ |,

so 7(q) = |exp,(q)] = | exp, ™ (exp, (¢ (q) 7% 1,)) | = V2 (27(q))*.
Definition 35 (radial vector field). 0, := % 8(2:" = g;} a?;i-
Theorem 36. On U\{p}

(1) O, is nowhere-vanishing and orthogonal to the level set of r;
(2) (Gauss’ lemma) Vr = 0,,|0,| = 1.
List of properties: (as corollaries)

H,(0r) = V0, =0.

| _ 0gik .. k.
® Z]gljxj_xuglj_ézj_ k;axjx )
agij J agkg j 892] agjk‘ 1]
¢ Zij _Z] dr v Zzg Dk L Zzg P UL =0

© D Iha'zl = 0.
Exercise 37. consider the normal coordinates around p, show that at p
0? 0? 0?
it = gl =
R T T L s e
Exercise 38. show that in a riemannian manifold,
d(exp,(v), exp,(w)) = [v —w| + O(r?)
for v,w e T,M, |vl|,|w| <r

1.8. Hodge star operator and Hodge decomposition
INNER PRODUCT

Definition 39 (musical operators).

12



(1) X7 = gy X'da; (2) = g2
A natural way to extend g is g(dz’, dz?) (= g((d2?)?, (dz?)*)) = ¢¥, or
giljl e glljk
g(dxlade) = k!det : : —. k’!gIJ
g“@]l . e glk]k

for A*T*M. For ¢ = > fi,.i,dzt A -+ A da'*, we write

Py = Z (_1)‘U|fia(1)"'ia(k:)

aeS),
where ¢;,..;, is skew-symmetric.
Definition 40 (inner product for k-forms). (1) (¢, ) :== Lg(p,1);
(2) (¢ 9) = [ {p, ) dVol = 1 [ g(ep, ) d Vol.
List of properties:
© o= i dat A Adat =30, i datt A A das
e (p,0) =g prby = L3 g g Ly
e (dVol,dVol) =
Exercise 41. prove the properties above.

HODGE STAR OPERATOR

Definition 42 (Hodge star operator). Take an ONB of T*M, X A -+ A
¢" = dVol,. Define the linear operator * : Q¥ (M) — Q""F(M) by

«(vr€l) = vrsgn(I, I9)¢X
where I = (iy- 1), 1= (J1-* k) i1 < -+ <k, J1 <+ < Jn_k-
List of properties:
e x1 =dVol,*xdVol, =1, and *x v = (—1)¥"=Fy for v € QF(M);
o x(uAV) = (xu,v) = (=1)FOF) (y, xv), for u € QF(M),v € Q" F(M);

o uN*v =0 Axu = (u,v)dVol, (xu,*v) = (u,v), for u,v € Q¥(M).
Thus (u,v) = [u A *v.

Definition 43 (adjoint operator of d). (dg,¥) =: (¢, d*).
Theorem 44 (expression of d*). On QF(M), d* = (—1)"7 1 x dx.

(
(
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Proof. For u € Q¥Y(M),v € QF(M),
/(u,*d*v)d\/olg = /u/\**d*U
= (—1)k-Dn—ktl) /u Adxv
= (=1) - (=1)F L (=) D=k /du A *v
= (—1)"krntl / (du,v)dVol, .

Here we use Stokes’ formula for —

Exercise 45. forw € QP(M), show that

(dw)(X()a U 7Xp) - Z(_l)i(inw)(XOv N\ 7Xi7 U 7Xp)'

Exercise 46. for 1-form w, show that

. o Ow; ;
d'w = —g" <8x; —Ffjwk) =: —V'w;
DIVERGENCE

Definition 47 (divergence). The divergence of X is defined by
divX -dVol, = Lxd Vol .

List of properties:
o divX = aXZ + X" = V; X' (regrad V; X7 as coefficient of V;X);

divergence theorem: if X is of compact support, then

/dideVolg — 0.

for 1-form w with compact support, d*w = divwt, so

/d*deolg = 0.

for fo, f1 € C* (M), div /1V fo = g(V f1,V fa) + fiAfa, so

[ran=- [avn.vp) = [ pan

Exercise 48. (1) solve Ezercise 46 with the divergence theorem;
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(2) regard VX as VX°, then divX = tr,(VX), this is a more general
definition of divergence. for any smooth k-tensor field, define

div F' = tr,(VF),

where the trace is taken on the first two indices. For smooth covariant
k-tensor field F and (k+1)-tensor field on a compact manifold (M, g)
with boundary, show that

/ <VF,G>dVolg:/ <F®Nb,G>dVolg—/ (F,divG) d Vol,
M oM

M

where g is the induce metric of OM.

(3) let (M,g) be a riemannian manifold and f : M — R a lipschitz
function. then for any p € C°(M,R),

—/M<Vg0,Vf>dVolgz/ Ayp - fdVol,.

M
HODGE DECOMPOSITION

Definition 49 (Beltrami-Laplace operator (a.k.a. Hodge laplacian)).
A :=dd* 4+ d*d
A k-form wu is called harmonic if Au = 0, denote by H*(M) the set of
harmonic k-forms.

Theorem 50 (Hodge decomposition). There is an orthogonal decompo-
sition
QF (M) = (M) & d(Q" (M) & d*(Q"(M)).
Moreover, dimg H*(M) < oo.
Theorem 51. H*(M) = HY.(M;R).
Exercise 52. (1) show that Au = 0 iff du = 0,d*u = 0;
(2) prove Theorem 51;
(3) show that Hjp(R*\{0};R) # 0.
(4) suppose that M is connected, show that Hyr(M,R) = R.

15



1.9. Tensor calculus

COVRAIANT DERIVATIVES
A seemingly natural way to extend V is using musical operators, i.e.

. D o\’ .
J— YA} Jk — T A,k
Vo di) = (Vo (d2)f) = (Vai 33;"‘7) = TV da.

But Leibniz rule simplifies the calculations greatly:

N d ) D 9 |
B J) — = J — J B S
(V2,do) = <dg; , aa:k> <d:1: Vo 8xk> I8, = —I7,

Definition 53 (covraiant derivative). For T € I'( M, Q" T*M @ @*TM),
the covariant derivative VT € T'(M, @ T*M @ 5T M) is defined by
(V) (X, Xy, ws) = (VxT) (X1, ,ws).
For T = szllzzbdxll Q- ® VT — M/zjzlljzfdxz QAT @ -+ ® & =

OxJs

0
Oxds’

Oxis)

0 ! _ .
J ]s‘ p ] ]g ]m ] "'Q"']q i i
<8:C2T“1 a = D LT, + Z | ) dr'@ds" ®---®
=1

We ususlly write Tfllljr, i.e. the coefficient, instead of the whole tensor.

Definition 54 (2nd covariant derivative). V2T := V(VT), or locally
vkv TJ1 Js V (le Jé)

(SR 2011
Remark 55. Caution/ (Vk(VyT))fllf #+ ViV, T‘71 Z]S,
one s not a tensor.

Lemma 56. V?}(,YT = VxVyT — Vg vT, or locally
vkvlffilzjs _ (vk(v T))Jl Js (Finv T)]l ]s

in fact, the first

11 Z 1 Z
Proof.
Jids\ J1 ]s E Jm ]1""]"’]5 E p J1Js
V (WL’Ll ’LT.) - M/Z'Ll 7, F W’Lll ’[, szlmll”'p"'l
l
_ .] .71 .]5
F W]'Ll"'p"'lr
a V T ]1 ]s _|_ F]m V T .]IQJ
6xk Z1 Ay z : 21 Ty
_ E .71 “Js J J1Js
F VT -.-p.-.Z FkZlel.'.p'.'l'r

(VAT — T

le
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RICCI IDENTITY

From the definition of curvature tensor,

R(X, Y)T =VxVyT — VvaT — VyVxT + nyXT

. o o 0 0 :
:71...‘!75 . :71...:78 — . L .78
VAV T - T (R <—W, 8331) T) ( S da )

a a . )
= (R === | T ) T/
(e ) 7)
+ > R TIE = N Ry, T
m t

Since R (%, %) f = 0 for smooth function f, we obtain the following:

Theorem 57 (Ricci identity).

VkvlThjs _ vlvajljs _ Zij I a s Z RP s

110y 11Uy qu 11l kl’l;t Zl...p...ir'
m t

In particular, for vector fields and 1-forms,
ViViX' = V,\V;.X' = R, X",
ViViw; — V| Viw; = _Rszwp-
Exercise 58. prove the ricci identity in (normal) local coordinates.
CONTRACTION AND 2ND BIANCHI IDENTITY
Using Leibniz rule for 2-tensor T,
Xg(9.T) = 9(Vxg,T) + g(g9, VxT) = g(g, VxT),
this works similarly for 4-tensor S,
Xg(g®9.8) =9(Vxg®g.5)+9(g® 9, VxT) = g(g® g, VxT).
Proposition 59 (magic formulae for 2- and 4-tensors).
Viegd" Ty = g7V Ty,
V9" " Siin = 97 ¢V $Sijn.
Theorem 60 (2nd Bianchi identity).
ViRjipg + VjRiipg + ViRijpg = 0.
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As a corollary,
0= gjpgkq (ViRjkpg + VjRyipg + Vi Rijpg)
= —Vig” " Rijpg + "'V 6" Rigp + 9"V 19" Rijpq
= —VZS + gijj RiCZ'p —l—gkqvk Ricz-q,
ie. V;5 = Zgjkvj Ric;i, this is the contracted Bianchi identity.

Theorem 61 (Schur’s lemma). Let (M, g) be a connected Riemannian
manifold with dim M > 3. If f € C*(M), and one of the followings hold

(1)K = f, ie. RIX,Y,Y,X)=|X AY]2f for X,Y € TM;
(2) Ric=(n—1)fg
then f is a constant.
Proof. Assuming (2), S = ¢ Ric;; = n(n —1)f.
ViS =2¢"V; Ricyj = 2(n — 1)g”V,; fgr; = 2(n — 1)V f.
Thus n(n —1)Vif = 2(n — 1)V f, which implies that f is constant. [

Exercise 62. prove the 2nd Bianchi identity in local coordinates.

1.10. Miscellany
RIEMANNIAN SUBMERSIONS
Exercise 63. let m: (M,g) — (M, g) be a riemannian submersion.
(1) let H C TM be the subbundle such that H, 1 kerm,,,

(a) for each X € T'(M,TM), there exists a unique X € I'(M, H)
such that m, X = X;

(b) let o : [a,b] — M be a smooth curve, then for each p € 7~ (o (a)),
there exists € > 0 and a unique smooth curve & : |a,a + €] — M
such that

g(a) =p,moT = 0,0 (t) € Hyy).
(2) for X, Y € I'(M,TM), we have

. — 1 _ "
VQYY = VLY + §[X, Y]
where Z" is the orthogonal projection of Z to ker,.
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(3) for X, Y € I'(M,TM), we have

(4) show that m o exp,(v) = exp,,(dm,(v)). in particular, if ¥ is a
geodesic, then m o7 is a geodesic.

(5) show that
(a) (M, g) is complete if (M,q) is complete;
(b) 7 is a fibration if (M,q) is complete.
(c) give a counterezxample when (M,q) is not complete.

LIE GROUPS

A Riemannian metric A on a Lie group G is said to be left-invariant if
Lih = h, and bi-invariant if both left- and right-invariant.

Exercise 64. let G be a lie group with g the lie algebra.

(1) if h is a bi-invariant metric on a Lie group G, show that for left-
invariant vector fields X,Y, Z

WX, Y], 2) = h(X, [V, 2)).
(2) let (o, @), be an inner product on g, define
(Xg,Yy) = <(Lg‘1)*ng (Lg‘l)*Yg>e~
show that

(a) (e, @) is a left-invariant Riemannian metric on G.

(b) there is a bijection

{Inner products on g} <— .
metrics on G

left-invariant }

(¢) under the above bijection, Ad(G)-invariant inner products on g
correspond to bi-invariant riemannian metrics on G.

(8) let h be a bi-invariant riemannian metric with connection V, then
1
2
for left-invariant vector fields X,Y . Moreover,

VxY =-[X,Y],

1
R(X,)Y,Z W) = _Z([X’ Y|, [Z,W]),
for left-invariant vector fields X,Y, Z, W.
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(4) let h be a bi-invariant riemannian metric. show that

(a) the geodesics on G are precisely the integral curves of the left-
tnvariant vector fields.

(b) the exponential map for the lie group coincides with the exponen-
tial map of the levi-civita connection.

Exercise 65. the heisenberg group with its lie algebra is

1 a c T z
G = 1 b ||la,bceR), g= y ||lz,y,z € R
1
a basis for the lie algebra is
1 1
X — ’Y = 1 ,Z e
(1) show that the only non-zero brackets are [X,Y] = —[Y, X]| = Z.

(2) consider a left-invariant metric with {X,Y, Z} an onb. show that the
ricct tensor has both negative and positive eigenvalues.

(8) show that the scalar curvature is constant.

(4) show that the ricci tensor is not parallel.

2. The Bochner technique
2.1.  Killing vector fields

BOCHNER FORMULA FOR SMOOTH FUNCTIONS

Proposition 66. Let f : M — R be a smooth function over (M, g), then
1
EAQ\Vﬂ? = |Hess f|* + Ric(V £, Vf) + g(VA, £, V ).
CURVATURE AND KILLING VECTOR FIELDS

Definition 67 (Killing vector field). Lxg = 0 (the flow is isometric).

Using Koszul formula, we can show

g((LxV)yZ, W) =0, ie. LxV =0.
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which gives a useful relation
R(X,Y)Z + V3 ;X =0.
It can also be stated and proven in terms of coefficients.
91V ViX' + Ry X' = 0.
Theorem 68. Let X be a Killing vector field, f = 3| X7,
(1) Vf=-VxX;
(2) For any vector field V,
Hess f(V,V) = g(Vy X, VyX) - RV, X, X, V).
In particular,
A,f = |VX]* - Ric(X, X).
Theorem 69. Let (M, g) be a compact Riemannian manifold
(1) if Ric < 0, then M has no non-trivial Killing vector field.
(2) (Bochner) if Ric < 0, then a vector field is parallel iff it is Killing,
The following theorem is proven using “linear algebra”.

Theorem 70. Let (M, g) be a compact Riemannian manifold with pos-

itive sectional curvature. If M 1is of even dimension, then every Killing
field has a zero.

Remark 71. There are examples of non-vanishing Killing vector fields
if M is odd, e.q. V, = (xg, —x1,"+* , Toy, —T2n_1) on SZ1L

Exercise 72 (conformal killing vector field). a vector field X is a confor-
mal killing vector field if Lxg = fg for some smooth function f : M — R.

(1) show that f = 2div X.
(2) show that

1 2
52| X[F = [VX[* — Rie(X, X) — (1 - —) (Vdiv X, X) .
n

(3) let (M, g) be a closed Riemannian manifold with Ric < 0, show that
there are no non-zero conformal killing fields.
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2.2. Harmonic 1-forms
BOCHNER FORMULA FOR HARMONIC 1-FORMS

Proposition 73. Let (M, g) be a compact Riemannian manifold, o €
QY(M) be a harmonic form, then

1
§Ag|a|2 = |Va|* 4+ Ric(of, of).

For general 1-form «, the Bochner formula is

1
§Ag|04|2 = —g(Aa,a) + |Val? + Ric(af, of).
where A is the Hodge laplacian.

Theorem 74. Suppose (M, qg) is a compact Riemannian manifold of
non-negative Ricci curvature.

(1) Every harmonic 1-form is parallel. Hence by(M) < dim M.
(2) If Ric > 0, then by(M) = 0.

2.3. Smooth maps

Proposition 75. Let f: (M, g) — (N, h) be a smooth map, then
1 d 2 _ AA d Nd 2 ikjlh Ric,. a B
Qvg‘ f| _(v fa f>+|v f‘ + 979" Nap 1C1]fkf[

— 97" Rag s OO FL L)
3. Jacobi fields

3.1. Variation formulae and Jacobi fields

VARIATIONS

Fix p,q € (M,g),a < b € R, let £ be the space of smooth curves
v [a,b] = M with v(a) = p,7(b) = ¢.

Definition 76 (energy). For v € £, E(y) := fab 7*%‘2dt.
Definition 77 (proper variation). A proper variation of v is a smooth
map a : |a,b] X (—e,&) = M with a(-,s) € L,a(-,0) = ~.
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Proposition 78 (definition of variational field). Let X € I'(|a, b], v*T'M)
with X, = X, = 0, then there exists a proper variation o of v with

0

“0s

X is called the variational vector field of a.

= X.
s=0

Theorem 79 (1st variation formula). Let « be a proper variation of
with V' the variational vector field, then

d B E(a(-,s)) = /ab <§$V, 7'> dt = — /ab <V, @ify’> dt .

ds
We can similarly consider the 2nd variation: «(t,s1,s2) @ [a,b] X
(—e1,61) X (—e9,69) = M, a(t,0,0) = y(t) with variational fields
0

a*_

881

—val

=W.
882

81282:0 8128220

Theorem 80 (2nd variation formula). Let o be a proper 2nd variation
with V, W the variational vector fields.

82
881852

E(al-, 51, 8)) = /b <§§tv, §$W> dt

81282:0

b
- / ROV, W) dt

b . 0 .
—/ (Vaa*—> ,Vary' )ydt.
a a1 (089 di

Remark 81. An important case is when sy, sy coincide, which occurs in
the proof of Synge and Weinstein-Synge theorems.

5128220

JACOBI FIELDS

Definition 82 (Jacobi field). Let v : [a,b] — (M, g) be a geodesic. A
vector field J along v is called a Jacobi field if

VVJ + R(J,4)y = 0.

Proposition 83 (local expansion of the length). Let f(t) = |J|?>, where
J is a Jacobsi field along a geodesic v, then

1
f(t) - t2 - gR(J/, 7,77/7 J/)‘0t4 + O(tG)
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Acturally, Proposition 83 implies Theorem 33.

Theorem 84 (characterization of a Jacobi field). Fvery Jacobi field is
given by some variation along some geodesic. Let (M, g) be a Riemannian
manifold, vy : [0,1] — M be a geodesic, then the Jacobi field along vy with
J(0) =0 and J'(0) = v is given by

0 /
J = Qe R o = exp, ) (t(7'(0) + sv))

for s small enough. In particular,
J(t) = (expy(o))*,tv’(O)(tv)-
The following result can be proved using normal coordinates.

Proposition 85. Let (M, g) be a complete Riemannian manifold, p €
M,~ :10,b] — M\ cut(p) a unit-speed geodesic with v(0) = p, and r the
distance from p. If J is a normal Jacobi field along v with J(0) = 0, then

H(J(t) = J'(t), H(Y(t)=0.

In particular,
Hess r(J, V)], = / (WY = R(J.o W) dt
0

for any vector field W along v with W(0) = 0.

Exercise 86. let 0 : (—e,e) = (M, g) be a smooth curve and V(s) €
['((—¢,e),0*T'M). consider

a(t, 5) = expyy V().

compute the variational vector field W(t) = a*%
W(0), VW ().

‘s:O and point out

3.2. Conjugate loci and cut loci

Definition 87 (conjugate locus). Let v : [ — (M, g) be a geodesic with
p =7(a),q =~(b). We say p,q are conjugate along ~y if there is a non-
trivial Jacobi field along v with J(a) = J(b) = 0. Write the cut locus
conj(p) for the set of all conjugate points of p along some geodesic.

Theorem 88. Let v € &€, v,(t) = exp,(tv),q = 7,(1), then v is a critical
point of exp,, : &, — M iff q is conjugate to p along .

24



Definition 89 (cut time, cut locus). Define the cut time of (p,v) by
teus(p, v) = sup{b| vljpp 9 a minimal geodesic},

and the cut point along v, by Vu(teuwt(p,v)). Define the cut locus cut(p)
by the set of all cut points of p.

Theorem 90. Let (M,g) be a complete Riemannian manifold, p €
M,v € T,M with |v| =1, and ¢ = tew(p, v).

(1) If 0 < b < ¢, then v,|pp has no conjugate points and is the unique
minimal unit-speed geodesic between p and 7,(b).

(2) if ¢ < 00, then Yy, is minimal. One or both of the followings hold:
(a) vu(c) is conjugate to p along y;
(b) there are two or more unit-speed geodesics between p and 7,(c).
Example 91. (1) For p € S", conj(p) = cut(p) = {—p}.
(2) For p € RP", conj(p) = {p}, cut(p) ~ S"L.
(3) For p = (z,y) € S x R, conj(p) = 0, cut(p) = {—x} x R.
(4) For p € T", cut(p) ~ 9([0, 1]™).

Exercise 92. let (M,g) be a complete Riemannian manifold, p € M.
suppose there exists some q € cut(p) with d(p,q) = d(p,cut(p)).

(1) show that either q is conjugate to p, or there are exactly two unit-
speed minimal geodesics 71,7, : [0,b] — M between p and q with

71(0) = —5(b), where b = d(p, q).

(2) if inj,(M) = inj(M), and q is not conjugate to p along any minimal
geodesic, show that there is a closed unit-speed geodesic v : [0,2b] —
M such v(0) = ~v(2b) = p and v(b) = q, where b = d(p, q).

There are many related topics like Morse index theorem, skeleton and
cellular structure given by Morse theory, etc. To be added someday.

4. Curvature and topology

4.1. Spaces of non-positive sectional curvature

Theorem 93 (Cartan-Hadamard). Let (M, g) be a complete Riemannian
manifold with non-positive sectional curvature. For any p € M, exp,, :

T,M — M is a covering map. The universal covering M = R".
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Corollary 94. Suppose M, N are compact smooth manifolds. If one of
them is simply-connected, then M X N does not admit a Riemannian
metric with non-positive sectional curvature.

Theorem 95 (characterization of CH manifolds). Let (M, g) be a simply-
connected complete manifold. The followings are euqivalent.

(1) M has non-positive sectional curvature;
(2) The differential of exponential map is length increasing, i.e.
|(exp)+.0 (V)| = [0]
forallp e M,v,v € T,M.
(8) The exponential map is distance increasing, i.e.
dy(exp, (v), exp, (7)) > [v — 7]
forallp e M,v,v € T,M.

Moreover, if the conditions are satisfied, then the exponential map is
diffeomorphic.

Exercise 96. let (M, g) be a ch manifold, p € M.
(1) fix v,v € T,M, show that for 0 <t < T,

v — 7] < d(expp(tv),expp(tﬂ)) < d(expp(Tv),epr(Tﬂ)).
t T
1

(2) let f(x) = 3d(x,p)?, show that f is strictly geodesically convex, i.e.
for any non-trivial geodesic v : [0,1] — M,

fOr(@) <@ =) f(v(0)) +£f(v(1)).

Theorem 97 (Cartan). Let (M, g) be a CH manifold, G a compact Lie
group acting smoothly and isometrically on M, then G has a fixed point.

Theorem 98 (Cartan). Let (M, g) be a complete Riemannian manifold
with non-positive sectional curvature, then mw (M) is torsion free.

4.2. Spaces of negative sectional curvature

Proposition 99. Let (M, g) be a complete Riemannian manifold with
non-positive sectional curvature and w: M — M the universal covering.

—

If ¥ :R — M is a common axis for all elements of Aut, (M), then M is
not compact.
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Exercise 100. let (M, g) be a closed riemannian manifold of dimension
> 2 with negative sectional curvature. let M be its universal, I' = w1 (M)
can be identified as a subgroup of Isom(M) by deck transformations.

(1) show that there are 1,72 € w1 (M) with different axes.

—

(2) show that the centralizer of I' C Isom(M) is trivial.

Theorem 101 (Preissmann). Let (M, g) be a compact Riemannian man-
ifold with negative sectional curvature.

(1) Any non-trivial abelian subgroup of w (M) is isomorphic to Z.
(2) m (M) is not abelian.

Corollary 102. Suppose M, N are compact cmooth manifolds. Then
M x N does not admit a Riemannian metric of negative sectional cur-
vature.

Theorem 103. Let (M, g) be a compact Riemannian manifold with neg-
ative sectional curvature.

(1) (Byers) Any non-trivial solvable subgroups of mi(M) is isometric to
Z. In particular, (M) is not solvable.

(2) Any subgroup of mi (M) which contains a non-trivial abelian normal
subgroup is isomorphic to Z.

There are many further topics like Milnor’s exponential-growth of fun-
damental group, CAT(< 0) geometry, etc. To be added someday.

4.3. Spaces of non-negative curvature
Theorem 104 (Myers). Let (M", g) be a complete manifold. If

(n—1)g

R2
then diam(M, g) < wR. In particular, M is compact and m (M) is finite.
(Cheng) If diam(M, g) = mR, then M is isometric to (5", gean)-

Exercise 105. for (R?, g, = ea(xQ‘Lyz)(d:E ® dr + dy ® dy)),

Ric >

(1) compute the curvatures, conclude that it is Finstein;
(2) show that if a > 0, then it is complete;
(3) show that if a < 0, then it is not complete.
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Theorem 106 (Synge). Let (M, g) be a compact Riemannian manifold
with positive sectional curvature.

(1) If dim M is even and M is orientable, then M is simply connected;

(2) If dim M is odd, then M is orientable.

Corollary 107. Let (M, g) be a compact Riemannian manifold with pos-

itive sectional curvature. If dim M is even and M is not orientable, then
m (M) =17Z/27.

For example, RP? x RP? U(2),U(2)/0(2) do not admit a Riemannian
metric with positive sectional curvature, in each case, the obstruction is
the fundamental group.

Theorem 108 (Weinstein-Synge). Let (M",g) be a compact Rieman-
nian manifold with positive sectional curvature. Given an isometry
F: M — M such that F' preserve the orientation if n is even, changes
the orientation if n is odd. Then F has a fixed point.

Exercise 109. show that there is no compact manifold that admits both
a metric of positive definite ricci curvature and a metric of non-positive
sectional curvature.

4.4. Space forms

Theorem 110 (Riemann-Hopf-Killing). Let (M, g) be a complete mani-
Jold with constant sectional curvature, then it is isometric to a Rieman-
nian quotient of the form M/F where M is one of the models spaces

(1) R", (2) 5"(r), (3) H"(r)
and I' C Isom(]\7) is discrete and acts freely.

Here is a corollary of the Cartan-Ambrose-Hicks theorem.

Theorem 111. Let (M, gy) be connected, 1 be two local isometries
from M to (N,gn). If there exists some point p € M with ¢(p) = ¥(p)

and @y, = Yy, then @ = 1.

Corollary 112. Let (M, g) be a connected simply-connected complete
Riemannian manifold. The followings are equivalent.

(1) (M, g) is of constant sectional curvature.
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(2) For every pair of points p,q € M and linear isometry 11 : T,M —
T,M, there exists an isometry ¢ : M — M with (p) = q, ps, = .

Corollary 113. Let (M, g) be a complete and of constant sectional cur-
vature 1. If dim M = 2m, then (M, g) is isometric to S*™ or RP?™.

For convenience, we write S} for the n-dimensional space form with
constant sectional curvature k, and

t , if k=0
sng(t) = \/igsin\/Et Cifk>0
\/%—ksinh\/—kt , if k<0

Theorem 114 (Jacobi fields in space forms). Let (M, g) be a Riemannian
manifold with constant sectional curvature k, and v a unit-speed geodesic.
Then a normal Jacobi field J with J(0) = 0 is of the form

J(t) = asng(t)E(t),
where a is constant, E(t) is any unit parallel vector field with (E,~") = 0.

Theorem 115. Let U be a geodesic ball around p € S, r the distance
from p. Then on U\{p} under the normal coordinates,

g = dr* + sni(r)g,
where g is the induced form on U\{p} by local trivialization.

Corollary 116 (an integral formula). Let U be a geodesic ball of radius
b around p € S. If f : U — R is a bounded integrable function, then

b
[ravi= [ [ roa(pwysmiordoavols..
U Sn=1.J0

where @ : RT x "1 — U\{p}, (p,w) — pw.

Remark 117. A more general integral formula applies to the Heintze-
Karcher type inequality for embedded hypersurfaces in space forms.

Proposition 118. Let U be a geodesic ball of radius b around p € S}, r
the distance from p. Then

3¢ sny (1)

" sng(r)

where m, is the projection to the orthogonal complement of 0,|,. Hence

T

Hessr = sny (r) sng(r)g,
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and

5. Comparison theorems of curvatures

5.1. Rauch comparison
RAUCH COMPARISON AND COROLLARIES

Theorem 119 (Rauch comparison). Let (M, g), (M ,g) be two Rieman-

A~

nian manifolds with dim M < dim M. Suppose that v,7 : [0,1] — M, M
are unit-speed geodesics, and

(1) for any t and any planes ©,% C TyM, Tw)]\? with +'(t),7'(t) €
Y2, 25, the sectional curvatures satisfy

Kx((t)) < K=(3(t)),

(2) 7(0) has no conjugate points along |-
Then for any Jacobi fields J, jglong v, with initial conditions J(0) =
¢v'(0), J(0) = ¢7'(0), |J'(0)| = [J'(0)], g(J'(0),7(0)) = g(J(0),7'(0)), we

Y

have |J| < |J(t)| for all t € [0,1].
A useful case is when (1\7 ,g) is the space form.

Corollary 120 (Jacobi field comparison). Let (M, g) be a complete Rie-
mannian manifold, p € M,U = M\ cut(p).Let v : [0,b] — U be a unit-
speed geodesic with v(0) = p and J be any normal Jacobi field along ~y
with J(0) = 0. Then

(1) if the sectional curvature Ky < k, then
[J(8)] = sni(£)]J(0)]

(2) if the sectional curvature Ky > k, then
[J(£)] < snx(t)]J'(0))]

b L ifk <0

ﬁthemmLWWBh:{mmme},#k=%>0'

Corollary 121 (conjugate comparison). Let (M, g) be a complete Rie-
mannian manifold with sectional curvature Ky < k.
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(1) If £ < 0, then M has no conjugate points along any geodesic.

(2) If k = % > 0, then there is no conjugate point along any geodesic
shorter that TR.

Corollary 122. Let (M, g) be a complete Riemannian manifold. Suppose
0 < C) < Ky <0y, lety be any geodesic in M and | be the distance
along v between two consecutive conjugate points on vy, then

T o< ™
VG T TV

In particular, exp, has no critical points on B (O, 72;2>

ﬁ

INJECTIVITY RADIUS

The following result can be proved using Corollary 122, Exercise 92.

Theorem 123 (Klingenberg’s injectivity radius estimate). Let (M, g) be
a compact Riemannian manifold with Ky < C where C' > 0, set

(M, g) = /{L(v) | v is a smooth closed geodesic}.

Then either inj(M) > —= or inj(M) = l(]\g’g).

5.2. Hessian and Laplacian comparisons

Theorem 124 (Hessian comparison). Let (M, g),(/]\z, g) be two Rie-
mannian manifolds with the same dimension , p € M,p € M, U =
M\ cut(p),(? = M\ cut(p), r,r the distance from p,p. Suppose v,7 :
[0,6] — U,U are two unit-speed geodesics with v(0) = p,y(b) = ¢,7(0) =
p,7(b) = q. If for any t and any planes 3, i, the sectional curvatures
satisfy

Kx((t) = Kx(3(2),
then for any vectors X € T,M,X € Tq~]\7 with |X| = |X| = 1 and
X 1y(6).X L)

~ o~

Hess (X, X) < Hess7(X, X).

In particular,
Agrly < Bgrlze.

Moreover, if the identity holds for all t, then Kx(v(t)) = Kg(7(t)).
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Theorem 125 (Laplacian comparison). Let (M, g) be a complete Rie-

mannian manifold, p € M,U = M\ cut(p),r the distance from p. If
Ric > (n — 1)kg

for some constant k, then

sy (r)

sny(r)

on U\{p}. Moreover, if the identity holds on U\{p}, then (M,g) has
constant sectional curvature k.

Agr < (n—1)

5.3. Volume comparison

VOLUME COMPARISON

Write B(p,d) for the metric ball centered at p, g; the metric with
constant sectional curvature k on B(p,d)\{p}.

Theorem 126 (Bishop-Gromov). Let (M, g) be a complete Riemannian
manifold with
Ric > (n — 1)kg,
for some constant k. Then the volume ratio
Voly(B(p,9))
Voly, (B(p,d))
is non-increasing for 6 € R™, and
lim Voly(B(p,9))
5-0 Volg, (B(p, §))
Moreover, if there exists 0 < 61 < 0o < 0 with
Voly(B(p,01)) _ Voly(B(p,2))
Voly, (B(p,d1)) ~ Voly (B(p, )
then Vol,(B(p,0)) = Vol (B(p,d)) for 6 € [0,09] and g is of constant

sectional curvature on B(p, d).

Theorem 127 (Zhu). Let (M,g) be a complete Riemannian manifold
with

= 1.

Ric > (n — 1)kg,
for some constant k. Then for 0 < §; < min{ds, d3} < max{ds, 3} < d4,

Vol,(B(p,rs)) — Voly,(B(p,3)) o Vol,(B(p,r2)) — Voly,(B(p,r1))
Voly, (B(p,74)) — Voly, (B(p,73)) ~ Volg(B(p,r2)) — Voly, (B(p, 1))
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Proposition 128 (Gromov). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric > (n—1)kg for some constant k > 0. Then

Vol, (M) < Vol,, (sn(%g |

If the equality holds, then (M, g) is isometric to S™ <\/LE)

Proposition 129 (Cheng). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric > (n — 1)kg for some constant k > 0. If

diam M = -, then (M, g) is isometric to S™ (ﬁ)

Combining the divergence theorem, Theorem 66, Proposition 129, we
can show the following results.

Theorem 130. Let (M, g) be a compact orientable Riemannian manifold
of dimension n > 2. Suppose Ric > \g > 0.

(1) (Lichnerowicz) The first non-zero eigenvalue A1 of the Hodge lapla-
cian A = dd* + d*d satisfies

(2) (Obata) If A = "5\, then (M, g) is isometric to the round sphere

(5 () ).

Theorem 131 (Bishop-Yau). Let (M, g) be a complete non-compact Rie-
mannian manifold of dimension n with Ric > 0. Then

| n—1
e Vol (B(p, 1))r < Voly(B(p. 1)) < Vol (B(p.r)) =~ L,

for some positive constant c,, depending only on n and large r.

5.4. 'The splitting theorem

Theorem 132 (Cheeger-Gromoll). Let (M, g) be a complete Riemannian
manifold of dimension n with Ricg > 0. If there is a geodesic line in M,
then (M, g) is isometric to R x N, gr @ gn, where Ricgy > 0.

Corollary 133. Let (M, g) be a complete Riemannian manifold with
Ric > 0.

(1) (M, g) is isometric to (R* x N, gge ® gn), where N does not contain
a geodesic line and Ric gy > 0.
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(2) The isometry group splits
Isom (M, g) = Isom(R”, ggi) x Isom(N, gn).

Definition 134 (Bieberbach group). A subgroup B, of Isom(R", gean) =
O(n) x R™ is a Bieberbach group if it acts freely on R" and R"/B,, is a
compact manifold.

Theorem 135 (structure of manifolds with Ric > 0). Let (M, g) be a

compact Riemannian manifold with Ric > 0, and 7w : (M ,ﬁ) — (M, g) its
universal covering with pull-back metric.

(1) There exists some integer k > 0 and a compact Riemannian manifold
(N, gn) with Ric gy > 0 such that (M ) is isometric to (R¥x N, ggi®
gn).

(2) The isometry group splits
Isom (M, g) = Isom(R”, ggr) x Isom(N, gn).

(8) There exists a finite normal subgroup G of Isom(N, h), a Bieberbach
group By, and an exact sequence

0—G—m(M)— By — 0.

Corollary 136. Let (M, g) be a compact Riemannian manifold with

Ric > 0, and 7 : (M,§) — (M, g) its universal covering with pull-back
metric.

(1) If M is contractible, then (M, g) is isometric to (R", grn) and (M, g)
is flat.

(2) If (M, ) does not contain a line, then m,(M) is finite and by (M) = 0.
(8) If m (M) is finite, then M is compact and b (M) = 0.

Corollary 137. Let (M,qg) be a compact Riemannian manifold with
Ric > 0. If there exists some point p € M such that Ric, > 0, then
m (M) is finite and by (M) = 0.

Corollary 138. Let (M, g) be a compact Riemannian manifold with
Ric > 0, and dim M = n. Then by(M) < n. Moreover, by(M) = n
iff (M, g) is flat.

Corollary 139. S x S! can not admit Ricci flat metrics.
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Exercise 140. suppose (M", g) is compact with by = k. if Ric > 0, show
that the universal covering splits:

(M, g) = (N,h) x (R", ggn).

give an example where by < n and (]\7, g) = (R", grn).

6. Gathering important results

(1) Koszul formula
(2) for 3-dim manifolds, Einstein implies CSC.
(3) volume expression of the Laplacian {see 10}
(4) symmetry and orthogonality of the 2nd fundamental form
(5) Gauss’ lemma {see 24}
(6) Hopf-Rinow theorem {see 30}
(7) local expansion of metric {see 33}
(8) properties of the radial vector field and corollaries {see 36}
(9) expression of d* {see 44}
(10) divergence theorem {see 1.8}
(11) Ricci identity {see 57}
(12) 2nd Bianchi identity {see 60}
(18) Schur’s lemma {see 61}
(14) Bochner formula for smooth functions {see 66}
(15) Bochner formula for Killing vector fields{see 68}
(16) Bochner formula for harmonic 1-forms {see 73}
(17) *Bochner formula for smooth maps {see 75}
(18) 1st and 2nd variation of the energy
(19) characterization of the Jacobi field {see 84}
(20) index theorem and topology
(21) Cartan-Hadamard theorem {see 93}
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(22) characterization of CH manifolds {see 95}

(23) Cartan’s fixed point and torsion free theorem {see 97, 98}
(24) Preissmann theorem {see 101}

(25) Byers theorem {see 103}

(26) no product manifold admits a metric of negative sectional curvature
(27) Myers theorem {see 104}

(28) Synge theorem {see 106}

(29) Weinstein-Synge theorem {see 108}

(30) Riemann-Hopf-Killing theorem {see 110}

(31) properties of space of CSC

(32) Rauch comparison and corollaries

(33) Hessian and Laplacian comparisons

(84) volume comparison

(35) proof of Cheng’s rigidity theorem

(36) Lichnerowicz-Obata eigenvalue inequality and rigidity
(37) Cheeger-Gromoll splitting theorem and corollaries

(38) structure of manifolds with Ric > 0.

A. Isometry and local isometry

Definition 141 ((local) isometry). Let ¢ : (M, gar) — (N, gn) be smooth.

(1) ¢ is called a local isometry if @., : T,M — T M is a linear
isometry for every p € M, or equivalently, gyr = ©*gn-

(2) ¢ is called an isometry if ¢ is surjective and preserve the distance.
List of properties:
o if ¢ is a local isometry, then ¢ is totally geodesic;

o for smooth curve 7 : [a,b] — M and ¥ = p oy, v is a geodesic iff 7
is a geodesic.
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Theorem 142. Let ¢ : (M, gy ) — (N, gn) be smooth and bijective. The
followings are equivalent

(1) ¢ is an isometry.
(2) ¢ is a diffeomorphism and a local isometry.
(3) ¢ is a diffeomorphism and for every smooth curve v : [a,b] — M,

length(y o) = length(y).

Exercise 143. prove the theorem above.

B. Covering maps and transformations

RIEMANNIAN COVERING MAPS

Definition 144 (Riemannian covering map). A smooth covering map  :
(M,q) — (M, g) is a Riemannian covering map if it is a local isometry.

Theorem 145. Suppose 7 : (]\7, g) — (M, g) is a local isometry.

(1) If (]\7, g) 1is complete, then m is a Riemannian covering map and
(M, g) is complete.

(2) If 7 is a covering map, then (M, g) is complete zﬁ(]\?, g) is complete.
DECK TRANSFORMATIONS

Definition 146 (deck transformation). Let 7 : M — M be the universal
covering of M. A deck transformation F': M — M is a homeomorphism
such that mo F' = F, enote by Aut (M) the set of deck transformations
Theorem 147. (1) (M) = Aut,(M);

(2) Autﬁ(ﬁ) acts smoothly freely and properly on M

(3) Autﬂ(/]\Z) acts transitively on each fiber of .

C. Axes, rays and lines

FREE HOMOTOPY CLASS

Definition 148. Two loops o, 71;[0,1] — M are said to be freely ho-

motopic if they are homotopic through closed paths, i.e. there exists a
homotopy H(s,t) : [0,1] x [0,1] = M such that

H(0,t) = o(t), H(1,t) = 7 (t) and H(s,0) = hH(s,1).

37



AXES

Definition 149 (axis of an isometry). Let (M, g) be complete, F' : M —
M be an isometry. A geodesic R — M 1is called an axis of F' if F o~y is
a non-trivial translation of v, i.e.

F(y(t) = ~(t +¢)

for some constant ¢ # 0. F' is axial if it has an axis.

Lemma 150. Let (M,g) be complete, F' be an isometry. If dp(p) =
d(p, F(p)) has a positive minimum, then F has an axis.

Theorem 151. Let (M, g) be a compact Riemannian manifold, F : M —
M be a non-trivial deck transformation of m: M — M.

(1) 0F has a positive minumum and 0 > 2inj(M), thus F is axial.

(2) The axis corresponding to this minimum is mapped under m to a
closed geodesic, whose length is minimal in its free homotopy class.

Exercise 152. suppose (M, g) is a compact connected riemannian man-
ifold. every mon-trivial free homotopy class in M is represented by a
closed geodesic that has minimum length among all admissible loops in
the given free homotopy class.

GEODESIC RAYS

Definition 153 (geodesic ray). A geodesic ray is a unit-speed geodesic
v :[0,00) = M such that d(y(s),v(t)) = |s — t| for any s,t > 0.

Lemma 154. Let (M, g) be a complete Riemannian manifold. The fol-
lowings are equivalent.

(1) M is non-compact.
(2) For any p € M, there is a geodesic ray starting from p.

Proposition 155 (definition of Busemann function). Let (M, g) be a
complete Riemannian manifold, v : [0,00) — M be a geodesic ray starting
from a point p. Define

by (z) = d(z,7(t)) — t = d(z,7(t)) — d(7(0),~(t))
then bfy(a:) is non-increasing for t. Define the Busemann function by

by(x) = lim b ().

t—o0

38



List of properties:
o [03(x)| < d(z,7(0));
o [B(x) = Vi (y)| < d(z,y).

Exercise 156. compute the busemann functions on the upper half plane
H? with canonical metric of constant sectional curvature —1.

GEODESIC LINES

Definition 157 (geodesic line). A geodesic line is a unit-speed geodesic
v : R — M such that d(v(s),v(t)) = |s — t| for any s,t € R.

Lemma 158. Let (M, g) be a connected complete non-compact manifold.
If M contains a compact subset K such that M\K has at least two
un-bounded components, then there is a geodesic passing through K.
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