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Riemannian geometry: a note for reviewing
2024 autumn

This is a re-arranged note for the course on Riemannian geometry
given by professor Yang, which aims for a quick reviewing of the basic
computations and the main results. The gist lies in the exercises. Some
good references are [Pet06, Jos08, DCFF92, Wal09]. Many related topics
are to be appended in the future.
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1. Basic concepts and computations

1.1. Connections and curvatures

Definition 1 (connection). ∇ : TM × E → E, which is linear on TM ,
a derivation for E, where E →M is a bundle.

Definition 2 (Christoffel symbol). ∇ ∂
∂xi
eA = ΓB

iAeB.

Definition 3 (curvature tensor). R : TM ⊗ TM ⊗ E⊗ → E,

R(X,Y )e := ∇X∇Y e−∇Y∇Xe−∇[X,Y ]e

As for a Riemannian manifold (M, g), we consider usually Levi-Civita
connection, and several special curvature tensors.

Definition 4 (Levi-Civita connection). ∇ : TM × TM → TM , a con-
nection s.t.

(1) X(Y, Z) = (X∇Y , Z) + (Y,∇XZ);

(2) ∇XY −∇YX = [X,Y ].

Definition 5 (curvature tensors and operator).
(1) R(X,Y, Z,W ) := (R(X,Y )Z,W ), R = Rijkldxi ⊗ dxj ⊗ dxk ⊗ dxl;

(2) sectional curvature: Kσ(= sec(X,Y )) = R(X,Y,Y,X)
|X∧Y |2 , σ = span{X,Y };

(3) Ricci curvature: Ricij = gklRiklj;

(4) Scalar curvature: S = gij Ricij.

(5) curvature operator: R : ∧2TM → ∧2TM , such that g(R(X∧Y ), Z∧
W ) = R(X,Y, Z,W ).

List of properties:

• symmetry of R and first Bianchi;

• independence of basis for Kσ;

• independence of planes for Kσ iff being flat;

• for 3-dim manifolds, CRC implies CSC.

Definition 6 (trace definition of Ricci). Ric(v, w) = tr(x 7→ R(x, v)w).
Taking an ONB of TM ,

(1) Ric(v) :=
∑
R(v, ei)ei;
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(2) Ric(v, w) = g(Ric(v), w);

(3) for v = e1, Ric(v, v) =
∑
R(v, ei, ei, v) =

∑n
i=2 sec(v, ei).

Exercise 7. (1) show the Koszul formula;

(2) calculate Γk
ij, Rijkl;

(3) show that Rijkl =

1

2

(
∂2gjl
∂xi∂xk

+
∂2gik
∂xj∂xl

− ∂2gil
∂xj∂xk

− ∂2gjk
∂xi∂xl

)
+ gpq(Γ

p
ikΓ

q
jl − Γq

ilΓ
p
kj).

(4) compute the curvatures of Sn, H2;

(5) compute the curvatures of

gij = δij +
xixj

K2 −
∑

(xi)2
, K2 −

∑
(xi)2 > 0;

(6) compute the curvatures of (R2, ea(x
2+y2)(dx⊗ dx+ dy ⊗ dy)).

Exercise 8. (1) what’s the relation of curvatures between g and k · g;

(2) prove the integral formulae for Ric and S:

(a) for unit vector v, and S⊥v the set of unit vectors orthogonal to v,

Ricp(v, v) =
n− 1

Vol(Sn−2)

∫
w∈S⊥

v

sec(v, w) dV ĝ .

(b) for UTpM ∼= Sn−1,

Sp =
n

ωn−1

∫
Sn−1

Ricp(v, v) dS .

(3) let (M 3, g) be Einstein, show that (M, g) is of CSC.

(4) (hard, warped product) consider (Nn−1, gN), Ric = n−2
n−1λgN , λ < 0,

find a function ρ : R → (0,∞), such that (Mn, g) = (R × N, dr2 +
ρ2gN) becomes an Einstein metric with Ric = λg.

1.2. Hessian and scalar Laplacian

Consider smooth function f : (M, g)→ R.

Definition 9 (Hessian and saclar Laplacian).
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(1) Hess f := ∇2f = ∇df , i.e.

Hess f(X,Y ) = g(∇X∇f, Y ) = (∇X df) = XY f −∇XY f.

the Hessian operator is given by Hess f(X,Y ) = (Hf(X), Y ).
(2) ∆gf := trHess f = gij Hess fij.
Locally, Hess fij = Hess fji, thus Hess f is a symmetric 2-form.

Theorem 10 (volume expression of the Laplacian).

∆gf =
1√
det g

∂

∂xi

(
gij
√

det g ∂f
∂xj

)
Exercise 11. (1) for dVolg =

√
det g dx1 ∧ · · · ∧ dxn, compute ∂ det g

∂xi ,
∂ log det g

∂xi and ∂
√

det g
∂xi , show

∂

∂xi
dVolg =

1

2

∂ log det g
∂xj

dVolg .

(2) prove Theorem 10.
(3) show that

Hessφ(f) = φ′′ df 2 + φ′Hess f.

1.3. Pull-back operation

f :M → N induces f∗ : TM → f ∗TN , for immersion, f ∗TN ⊂ TN .

TM f ∗TN TN

M (N, h)

f∗

π′

ξ

π̂ π

f

Theorem 12 (definition of pull-back connection and metric). There ex-
ists compatible pull-back connection and metric defined by

(1) ∇̂ ∂
∂xi
êA = f∗

(
∂fα

∂xi∇ ∂
∂yα
eA

)
= f∗

(
∂fα

∂xi Γ
B
αA(f)eB

)
;

(2) ĝ = f ∗h, i.e. ĝ(êA, êB) = h(eA, eB).
Locally, drop the hats,

∇̂ ∂
∂xi

∂

∂yj
=
∂fα

∂xi
Γk
jα(f)

∂

∂yk
;

ĝij = h

(
f∗

∂

∂xi
, f∗

∂

∂xj

)
=
∂fα

∂xi
∂fβ

∂xj
hαβ.
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Exercise 13. (1) show the well-defined-ness and compatibility.

(2) show that R̂ijγδ =
∂fα

∂xi
∂fβ

∂xjRαβγδ.

1.4. The 2nd fundamental form

The 2nd fundamental form, which generalize the Hessian, is defined to
indicate the deviation under pull-back.

General case
Definition 14 (2nd fundamental form). B ∈ Γ(M,T ∗M⊗T ∗M⊗f ∗TN),
B(X,Y ) := ∇̂Xf∗Y − f∗∇XY .

Locally, Bα
ij = Bα

ji, thus B is a symmetric (2,1)-tensor, as a result,

∇̂Xf∗Y − ∇̂Y f∗X = f∗∇XY − f∗∇YX = f∗[X,Y ].

Exercise 15. (1) compute the local expression of B.
(2) f : (M, g)→ (N, h), and ∇̃ is the affine connection on T ∗M ⊗f ∗TN

induced by ∇M ,∇N , then B = ∇̃df , where df is regarded as a smooth
section in Γ(M,T ∗M ⊗ f ∗TN).

The case of Riemannian immersion

Given an immersion f : M → (M, g,∇), f ∗TM ⊂ TM = f ∗TM ⊕
T⊥M . We write (ĝ, ∇̂), (g,∇) for the induced structures on f ∗TN, TM .

List of properties:
• gij =

∂fα

∂xi
∂fβ

∂xj gαβ;

• B ∈ Γ(M,T ∗M ⊗ T ∗M ⊗ T⊥M), i.e. ĝ(B(X,Y ), f∗Z) = 0 for any
X,Y, Y ∈ Γ(M,TM). Equivalently (drop of push-forward),

ĝ(∇̂Xf∗Y, f∗Z) = ĝ(f∗∇XY, f∗Z) = g(∇XY, Z).

• (Gauss-Codazzi) for any X,Y, Z,W ∈ Γ(M,TM),
R(X,Y, Z,W )−R(X,Y, f∗Z, f∗W )

= ĝ(B(X,W ), B(Y, Z))− ĝ(B(X,Z), B(Y,W )).

Definition 16 (Weingarten map). X,Y ∈ Γ(M,TM), η ∈ Γ(M,T⊥M),
g(Wη(X), Y ) := Bη(X,Y ) := g(B(X,Y ), η).

Remark 17. Take (M̂, ĝ) = (RN , gRN ), we shall get Gauss’ Theorema
Egregium, especially for the immersion of a surface into R3.
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Exercise 18. (1) show the orthogonal relation with(out) the rank theo-
rem.

(2) consider immersion of a surface into R3, with unit normal vector n,
write the expression of first and second fundamental form, Bn, and
Gauss’ Theorema Egregium:

K =
det II
det I = sec(X,Y ) =

R(X,Y, Y,X)

gD(X,X)gD(Y, Y )− gD(X,Y )2
.

(3) show that Ric gD = KgD, S = 2K.

(4) consider Sn → Rn+1 and the local parametrization

γ : D → U+
n+1 ⊂ Rn+1, γ(u) =

(
u1, · · · , un,

√
1− |u|2

)
where D = {u | |u| < 1}.

(a) compute gD = γ∗gcan;
(b) compute the second fundamental form;
(c) compute the mean curvature H = 1

n trgD B.
Exercise 19. let (M, g) be a complete riemannian manifold. suppose
f :M → R is a smooth function with

|∇f | = 1, Hess f = 0.

set N = f−1(0), h = g|N , show that (N, h) is a totally geodesic submani-
fold of (M, g).

1.5. Parallel transports, geodesics and exponential maps

Parallel transport

Let γ : I → (M, g) be a smooth curve.
Proposition 20 (definition of parallel transport). For any v ∈ Tγ(t0)M ,
there exists a unique vector field V ∈ Γ(I, γ∗TM) (along γ) with

(1) V (t0) = v; (2) ∇̂V = 0.

Define the parallel transport along γ by Pt0,t,γ = V (t), for any t0, t ∈ I.
List of properties: the gist is a take a parallel frame.
• Pt2,t3,γ ◦ Pt1,t2,γ = Pt1,t3,γ, Pt,t,γ = id.
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• Ps,t,γ : Tγ(s)M → Tγ(t)M is a linear isometry for any s, t ∈ I;

• F (t, (s, v)) := (t, Ps,t,γ(v)) is a smooth function;

• d
dtPt,t0,γ(V (t)) = Pt,t0,γ(∇̂V (t)), for any vector field V along γ.

Exercise 21. prove the properties above.

Geodesic and exponential map

Proposition 22 (definition of geodesic). For any p ∈ M, v ∈ TpM, t0 ∈
R, there is an open interval I 3 t0 and a smooth curve γ : I →M with
(1) γ(t0) = p, γ ′(t0) := (γ∗

d
dt)|t0 = v;

(2) ∇̂γ′ = 0 along I.
The curve satisfying (2), i.e.

∇̂γ′ = ∇̂γ∗
d
dt =

d2γi
dt2

∂

∂xi
+

dγi
dt

dγj
dt Γ

k
ij(γ)

∂

∂xk
= 0,

is called a geodesic along I. Up to a shift of position, we suppose γ(0) =
p, γ ′(0) = v and write Ip,v for the maximal existence interval of γ.

List of properties:

• |γ′| is a constant for the geodesic γ;

• γcv(t) = γv(ct), i.e. invariant under rescaling.

• P0,t,γv(v) = γ′v(t).

Definition 23 (exponential map). Write Ep = {v | 1 ∈ Ip,v}, the expo-
nential map expp : Ep →M is defined by

expp(v) = γv(1),

where γv is the geodesic with γ(0) = p, γ ′(0) = v.
List of properties:

• expp(tv) = γv(t), for t ∈ Ip,v;

• exp is smooth on E = {(p, v) | v ∈ Ep};

• exp is a local diffeomorphism, since the differential

exp∗,0 : T0(TpM)→ TpM

is the identity map.
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• set Br(p) = {expp(v) | |v| < r}, then exp |Br(p) is a diffeomorphism.
The injectivity radius of p is

injp(M) := sup{r | exp |Br(p) is diffeomorphic},

and inj(M) := infp injp(M).

Exercise 24. prove the following Gauss’ lemma: fix p ∈M, r < injp(M)
and I an open interval. suppose

(1) w(s) : I → TpM satisfies |w(s)| = r and

(2) α(t, s) := expp(tw(s)) for (t, s) ∈ R× I, tw(s) ∈ Ep.

then 〈
α∗

∂

∂s
, α∗

∂

∂t

〉
= 0.

Exercise 25. (1) let M be a smooth manifold and ∇ any connection on
TM . We define the curvature endomorphism by

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

then ∇ is said to be flat if R(X,Y )Z ≡ 0. show that the followings
are euqivalent.

(a) ∇ is flat;
(b) for every point p ∈ M , there exists a parallel local frame defined

on a neighborhood of p;
(c) for all p, q ∈ M , parallel transport along an admissible curve

segment from p to q depends only on the path-homotopy class.
(d) parallel transport around any sufficiently small closed curve is the

identity, i.e. for every p ∈ M , there exists a neighborhood U of
p such that if γ : [a, b]→ U is an admissible curve in U starting
and ending at p, then Pab : TpM → TpM is the identity map.

(2) a vector field X is said to be parallel if ∇X ≡ 0.

(a) let p ∈ Rn, v ∈ TpRn, show that there is a unique parallel vector
field Y on Rn such that Yp = v.

(b) let X(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ) be the spherical coor-
dinate of an open subset U ⊂ S2, let Xφ = X∗

∂
∂φ , Xθ = X∗

∂
∂θ .

compute ∇Xθ
Xφ,∇Xφ

Xφ, and conclude that Xφ is parallel along
the equator and along each meridian θ = θ0.
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(c) let p = (1, 0, 0) ∈ S2, show that there is no parallel vector field
W on any neighborhood of p in S2 such that Wp = Xφ|p.

(d) conclude that no neighborhood of p in (S2, g) is isometric to an
open subset of (R2, gcan).

1.6. Completeness

completeness of manifolds and vector fields

A riemannian manifold is naturally a metric space under

dg(p, q) = inf
γ∈L

length(γ) = inf
γ∈L

∫
|γ′|

where L is the collection of piecewise smooth curves joining p, q.
Using Gauss’ lemma (Exercise 24), one can show

Proposition 26. Fix p ∈M, r < injp(M), then for any v with |v| < r,

dg(p, expp(v)) = |v|.

Thus the shortest curve joining p, q must be a geodesic.

Definition 27 (completeness of a manifold). (M, g) is (geodesically)
complete if expp(v) is well-defined for all p ∈ M, v ∈ TpM . Or equiva-
lently, all the geodesics are well-defined on R.
Definition 28 (completeness of a vector field). X is complete if it has
a global flow, i.e. the integral curve extends to R.
Exercise 29. (1) let (M, g) be complete, V a smooth vector field with
|V | ⩽ C, show that V is complete.

(2) let (M, g) be complete, show that every Killing vector field is complete.

Hopf-Rinow theorem

Theorem 30 (Hopf-Rinow). The followings are euqivalent
(1) (M, g) is geodesically complete;

(2) there exists some p ∈M such that expp is well-defined on TpM ;

(3) every closed and bounded subset of M is compact.

(4) (M,dg) is metrically complete.
Exercise 31. (1) every compact manifold is complete;
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(2) if (M, g1), (M, g2) satisfies g1 ⩾ g2 and (M, g2) is complete, then
(M, g1) is also complete.

(3) a riemannian manifold is said to be homogeneous if the isometry
group acts transitively. show that the homogeneous manifolds are
complete.

(4) let O ⊂ (M, g) be an open subset, show that if (O, g) is complete,
then O =M .

(5) let (M, g) = (R × N, dr2 + ρ2gN) where ρ : R → (0,∞), (N, gN) is
complete. show that (M, g) is complete.

(6) show that any riemannian manifold (M, g) admts a conformal change
(M,λ2g) that is complete.

1.7. Normal coordinates

Definition 32 (normal coordinates). Take an ONB of TpM , and define
B : Rn → TpM, r 7→ riei, which is an isometry. The (reversed) map

φ = B−1 ◦ exp−1p : U → TpM → Rn

gives (xi) = (ri ◦ φ), the normal coordinates centered at p.

List of properties:

• φ∗
∂
∂xi |p = ∂

∂ri and φ∗(ei) = B−1ei =
∂
∂ri , so

∂
∂xi |p = ei;

• gij(p) = δij;

• for v = vi ∂
∂xi |p, γiv(t) = tvi;

• Γk
ij|p = 0, thus ∂

∂xkgij|p = 0.

Theorem 33 (local expansion of metric). Under any normal coordinates,

gij = δij −
1

3
Riklj|pxkxl +O(|x|3), gij = δij +

1

3
Riklj|pxkxl +O(|x|3),

and also,

det g = 1− 1

3
Ricij |pxixj +O(|x|3), ∂gij

∂xkxl
=

1

3
(Riklj|p +Rilkj|p).

Exercise 34. show for small r that

(1) Vol(B(p, r)) = ωnr
n
(
1− Sp

6(n+2)r
2 +O(r3)

)
;
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(2) Area(S(p, r)) = nωnr
n−1
(
1− Sp

6nr
2 +O(r3)

)
.

Consider the distance function r(q) := dg(p, q) on U =M\ cut(p).
List of properties:

• r is continuous and is smooth on U\{p};

• r(q) = | exp−1p (q)|;

• ∇r = gij ∂r
∂xi

∂
∂xj is a smooth vector field on U\{p}.

In normal coordinates, recall that γiv(t) = xi◦γv(t) = tvi for v = vi ∂
∂xi |p,

so r(q) = | exp−1p (q)| = | exp−1p (expp(xi(q) ∂
∂xi |p))| =

√∑
(xi(q))2.

Definition 35 (radial vector field). ∂r := xi

r
∂
∂xi =

∑
i
∂r
∂xi

∂
∂xi .

Theorem 36. On U\{p}

(1) ∂r is nowhere-vanishing and orthogonal to the level set of r;

(2) (Gauss’ lemma) ∇r = ∂r, |∂r| = 1.

List of properties: (as corollaries)

• Hr(∂r) = ∇∂r∂r = 0.

•
∑

j gijx
j = xi, gij = δij −

∑
k
∂gik
∂xj x

k;

•
∑

j
∂gij
∂xk x

j =
∑

j
∂gkj
∂xi x

j,
∑

i,j
∂gij
∂xk x

ixj =
∑

i,j
∂gjk
∂xi x

ixj = 0

•
∑

i,j Γ
k
ijx

ixj = 0.

Exercise 37. consider the normal coordinates around p, show that at p

∂2

∂xl∂xk
gji +

∂2

∂xj∂xl
gki +

∂2

∂xk∂xj
gli = 0.

Exercise 38. show that in a riemannian manifold,

d(expp(v), expp(w)) = |v − w|+O(r2)

for v, w ∈ TpM, |v|, |w| ⩽ r.

1.8. Hodge star operator and Hodge decomposition

Inner product

Definition 39 (musical operators).

12
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(1) X♭ := gijX
idxj; (2) ω♯ := gijωi

∂
∂xj

A natural way to extend g is g(dxi, dxj)(= g((dxi)♯, (dxj)♯)) = gij, or

g(dxI , dxJ) = k! det

 gi1j1 · · · gi1jk
... . . . ...

gikj1 · · · gikjk

 =: k!gIJ

for ∧kT ∗M . For φ =
∑
fi1···ikdxi1 ∧ · · · ∧ dxik, we write

φi1···ik =
∑
σ∈Sk

(−1)|σ|fiσ(1)···iσ(k)

where φi1···ik is skew-symmetric.

Definition 40 (inner product for k-forms). (1) 〈φ, ψ〉 := 1
k!g(φ, ψ);

(2) (φ, ψ) :=
∫
〈φ, ψ〉 dVol = 1

k!

∫
g(φ, ψ) dVol.

List of properties:

• φ = 1
k!

∑
φi1···ikdxi1 ∧ · · · ∧ dxik =

∑
i1<···<ik

φi1···ikdxi1 ∧ · · · ∧ dxik;

• 〈φ, ψ〉 = gIJφIψJ = 1
k!

∑
gi1j1 · · · gikjkφi1···ikψj1···jk;

• 〈dVol, dVol〉 = 1.

Exercise 41. prove the properties above.

Hodge star operator

Definition 42 (Hodge star operator). Take an ONB of T ∗M , ξ1 ∧ · · · ∧
ξn = dVolg. Define the linear operator ∗ : Ωk(M)→ Ωn−k(M) by

∗(vIξI) = vI sgn(I, Ic)ξI
c

where I = (i1 · · · ik), Ic = (j1 · · · jn−k), i1 < · · · < ik, j1 < · · · < jn−k.
List of properties:

• ∗1 = dVolg, ∗ dVolg = 1, and ∗∗ v = (−1)k(n−k)v, for v ∈ Ωk(M);

• ∗(u∧ v) = 〈∗u, v〉 = (−1)k(n−k) 〈u, ∗v〉, for u ∈ Ωk(M), v ∈ Ωn−k(M);

• u ∧ ∗v = v ∧ ∗u = 〈u, v〉 dVolg, 〈∗u, ∗v〉 = 〈u, v〉, for u, v ∈ Ωk(M).
Thus (u, v) =

∫
u ∧ ∗v.

Definition 43 (adjoint operator of d). (dφ, ψ) =: (φ, d∗ψ).
Theorem 44 (expression of d∗). On Ωk(M), d∗ = (−1)nk+n+1 ∗ d∗.

13
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Proof. For u ∈ Ωk−1(M), v ∈ Ωk(M),∫
〈u, ∗ d ∗ v〉 dVolg =

∫
u ∧ ∗∗ d ∗ v

= (−1)(k−1)(n−k+1)

∫
u ∧ d ∗ v

∗
= (−1) · (−1)k−1 · (−1)(k−1)(n−k+1)

∫
du ∧ ∗v

= (−1)nk+n+1

∫
〈du , v〉 dVolg .

Here we use Stokes’ formula for ∗=.

Exercise 45. for ω ∈ Ωp(M), show that

(dω)(X0, · · · , Xp) =
∑

(−1)i(∇Xi
ω)(X0, · · · , X̂i, · · · , Xp).

Exercise 46. for 1-form ω, show that

d∗ω = −gij
(
∂ωi

∂xj
− Γk

ijωk

)
=: −∇iωi.

Divergence

Definition 47 (divergence). The divergence of X is defined by

divX · dVolg = LXdVolg .

List of properties:
• divX = ∂Xi

∂xi + Γs
isX

i = ∇iX
i (regrad ∇iX

j as coefficient of ∇iX);

• divergence theorem: if X is of compact support, then∫
divX dVolg = 0.

• for 1-form ω with compact support, d∗ω = divω♯, so∫
d∗ω dVolg = 0.

• for f0, f1 ∈ C∞0 (M), div f1∇f2 = g(∇f1,∇f2) + f1∆f2, so∫
f1∆f2 = −

∫
g(∇f1,∇f2) =

∫
f2∆f1.

Exercise 48. (1) solve Exercise 46 with the divergence theorem;

14
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(2) regard ∇X as ∇X♭, then divX = trg(∇X), this is a more general
definition of divergence. for any smooth k-tensor field, define

divF = trg(∇F ),

where the trace is taken on the first two indices. For smooth covariant
k-tensor field F and (k+1)-tensor field on a compact manifold (M, g)
with boundary, show that∫
M

〈∇F,G〉 dVolg =
∫
∂M

〈
F ⊗N ♭, G

〉
dVolĝ−

∫
M

〈F, divG〉 dVolg

where ĝ is the induce metric of ∂M .

(3) let (M, g) be a riemannian manifold and f : M → R a lipschitz
function. then for any φ ∈ C∞0 (M,R),

−
∫
M

〈∇φ,∇f〉 dVolg =
∫
M

∆gφ · f dVolg .

Hodge decomposition

Definition 49 (Beltrami-Laplace operator (a.k.a. Hodge laplacian)).

∆ := dd∗ + d∗d

A k-form u is called harmonic if ∆u = 0, denote by Hk(M) the set of
harmonic k-forms.

Theorem 50 (Hodge decomposition). There is an orthogonal decompo-
sition

Ωk(M) = Hk(M)⊕ d(Ωk−1(M))⊕ d∗(Ωk+1(M)).

Moreover, dimRH
k(M) <∞.

Theorem 51. Hk(M) ∼= Hk
dR(M ;R).

Exercise 52. (1) show that ∆u = 0 iff du = 0, d∗u = 0;

(2) prove Theorem 51;

(3) show that H1
dR(R2\{0};R) 6= 0.

(4) suppose that M is connected, show that HdR(M,R) ∼= R.

15
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1.9. Tensor calculus

Covraiant derivatives
A seemingly natural way to extend ∇ is using musical operators, i.e.

∇ ∂
∂xi

dxj =
(
∇ ∂

∂xi
(dxj)♯

)♭
=

(
∇ ∂

∂xi
gjk

∂

∂xk

)♭

= −Γj
ikdx

k.

But Leibniz rule simplifies the calculations greatly:(
∇ ∂

∂xi
dxj
) ∂

∂xk
=

∂

∂xi

〈
dxj, ∂

∂xk

〉
−
〈
dxj,∇ ∂

∂xi

∂

∂xk

〉
= −Γs

ikδjs = −Γ
j
ik.

Definition 53 (covraiant derivative). For T ∈ Γ(M,⊗rT ∗M ⊗⊗sTM),
the covariant derivative ∇T ∈ Γ(M,⊗r+1T ∗M ⊗⊗sTM) is defined by

(∇T )(X,X1, · · · , ωs) = (∇XT )(X1, · · · , ωs).

For T = T j1···js
i1···ir dx

i1 ⊗ · · · ⊗ ∂
∂xjs , ∇T = W j1···js

ii1···irdx
i ⊗ dxi1 ⊗ · · · ⊗ ∂

∂xjs =(
∂

∂xi
T j1···js
i1···ir −

r∑
l=1

Γp
iil
T j1···js
i1···p···ir +

s∑
m=1

Γjm
iq T

j1···q···js
i1···ir

)
dxi⊗ dxi1 ⊗ · · · ⊗ ∂

∂xjs
.

We ususlly write T j1···js
i1···ir , i.e. the coefficient, instead of the whole tensor.

Definition 54 (2nd covariant derivative). ∇2T := ∇(∇T ), or locally
∇k∇iT

j1···js
i1···ir = ∇k(W

j1···js
ii1···ir).

Remark 55. Caution! (∇k(∇iT ))
j1···js
i1···ir 6= ∇k∇iT

j1···js
i1···ir , in fact, the first

one is not a tensor.
Lemma 56. ∇2

X,Y T = ∇X∇Y T −∇∇XY T , or locally

∇k∇iT
j1···js
i1···ir = (∇k(∇iT ))

j1···js
i1···ir − (Γj

ki∇jT )
j1···js
i1···ir .

Proof.

∇k(W
j1···js
ii1···ir) =

∂

∂xk
W j1···js

ii1···ir +
∑
m

Γjm
kqW

j1···q···js
ii1···ir −

∑
l

Γp
kil
W j1···js

ii1···p···ir

− Γj
kiW

j1···js
ji1···p···ir

=
∂

∂xk
(∇iT )

j1···js
i1···ir +

∑
m

Γjm
kq (∇iT )

j1···q···js
i1···ir

−
∑
l

Γp
kil
(∇iT )

j1···js
i1···p···ir − Γj

kiW
j1···js
ji1···p···ir

= (∇k(∇iT ))
j1···js
i1···ir − (Γj

ki∇jT )
j1···js
i1···ir .
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Ricci identity

From the definition of curvature tensor,

R(X,Y )T = ∇X∇Y T −∇∇XY T −∇Y∇XT +∇∇Y XT

= ∇2
X,Y T −∇2

Y,XT.

∇k∇lT
j1···js
i1···ir −∇l∇kT

j1···js
i1···ir =

(
R

(
∂

∂xk
,
∂

∂xl

)
T

)(
∂

∂xi1
, · · · , dxjs

)
=

(
R

(
∂

∂xk
,
∂

∂xl

)
T

)
T j1···js
i1···ir

+
∑
m

Rjm
klqT

j1···q···js
i1···ir −

∑
t

Rp
klit
T j1···js
i1···p···ir

Since R
(

∂
∂xk ,

∂
∂xl

)
f = 0 for smooth function f , we obtain the following:

Theorem 57 (Ricci identity).

∇k∇lT
j1···js
i1···ir −∇l∇kT

j1···js
i1···ir =

∑
m

Rjm
klqT

j1···q···js
i1···ir −

∑
t

Rp
klit
T j1···js
i1···p···ir .

In particular, for vector fields and 1-forms,

∇k∇lX
i −∇l∇kX

i = Ri
klqX

q,

∇k∇lωj −∇l∇kωj = −Rp
kljωp.

Exercise 58. prove the ricci identity in (normal) local coordinates.

Contraction and 2nd Bianchi identity

Using Leibniz rule for 2-tensor T ,

Xg(g, T ) = g(∇Xg, T ) + g(g,∇XT ) = g(g,∇XT ),

this works similarly for 4-tensor S,

Xg(g ⊗ g, S) = g(∇Xg ⊗ g, S) + g(g ⊗ g,∇XT ) = g(g ⊗ g,∇XT ).

Proposition 59 (magic formulae for 2- and 4-tensors).

∇kg
ijTij = gij∇kTij,

∇sg
ijgklSijkl = gijgkl∇sSijkl.

Theorem 60 (2nd Bianchi identity).

∇iRjkpq +∇jRkipq +∇kRijpq = 0.
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As a corollary,

0 = gjpgkq (∇iRjkpq +∇jRkipq +∇kRijpq)

= −∇ig
jpgkqRkjpq + gjp∇jg

kqRikqp + gkq∇kg
jpRijpq

= −∇iS + gjp∇j Ricip+gkq∇k Riciq,

i.e. ∇iS = 2gjk∇j Ricik, this is the contracted Bianchi identity.

Theorem 61 (Schur’s lemma). Let (M, g) be a connected Riemannian
manifold with dimM ⩾ 3. If f ∈ C∞(M), and one of the followings hold

(1) K = f , i.e. R(X,Y, Y,X) = |X ∧ Y |2f for X,Y ∈ TM ;

(2) Ric = (n− 1)fg

then f is a constant.

Proof. Assuming (2), S = gij Ricij = n(n− 1)f .

∇kS = 2gij∇iRickj = 2(n− 1)gij∇ifgkj = 2(n− 1)∇kf.

Thus n(n− 1)∇kf = 2(n− 1)∇kf , which implies that f is constant.

Exercise 62. prove the 2nd Bianchi identity in local coordinates.

1.10. Miscellany

Riemannian submersions

Exercise 63. let π : (M, g)→ (M, g) be a riemannian submersion.

(1) let H ⊂ TM be the subbundle such that Hp ⊥ ker π∗,p,

(a) for each X ∈ Γ(M,TM), there exists a unique X ∈ Γ(M,H)
such that π∗X = X;

(b) let σ : [a, b]→M be a smooth curve, then for each p ∈ π−1(σ(a)),
there exists ε > 0 and a unique smooth curve σ : [a, a + ε]→ M
such that

σ(a) = p, π ◦ σ = σ, σ′(t) ∈ Hσ(t).

(2) for X,Y ∈ Γ(M,TM), we have

∇g

X
Y = ∇h

XY +
1

2
[X, Y ]v

where Zv is the orthogonal projection of Z to ker π∗.

18
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(3) for X,Y ∈ Γ(M,TM), we have

R(X,Y, Y,X) = R(X, Y , Y ,X) +
3

4

∣∣[X, Y ]v
∣∣2 .

(4) show that π ◦ expp(v) = expπ(p)(dπp(v)). in particular, if γ̃ is a
geodesic, then π ◦ γ̃ is a geodesic.

(5) show that
(a) (M, g) is complete if (M, g) is complete;
(b) π is a fibration if (M, g) is complete.
(c) give a counterexample when (M, g) is not complete.

Lie groups
A Riemannian metric h on a Lie group G is said to be left-invariant if

L∗gh = h, and bi-invariant if both left- and right-invariant.
Exercise 64. let G be a lie group with g the lie algebra.
(1) if h is a bi-invariant metric on a Lie group G, show that for left-

invariant vector fields X,Y, Z
h([X,Y ], Z) = h(X, [Y, Z]).

(2) let 〈•, •〉e be an inner product on g, define
〈Xg, Yg〉 = 〈(Lg−1)∗Xg, (Lg−1)∗Yg〉e .

show that
(a) 〈•, •〉 is a left-invariant Riemannian metric on G.
(b) there is a bijection

{Inner products on g} ←→

{
left-invariant
metrics on G

}
.

(c) under the above bijection, Ad(G)-invariant inner products on g

correspond to bi-invariant riemannian metrics on G.
(3) let h be a bi-invariant riemannian metric with connection ∇, then

∇XY =
1

2
[X,Y ],

for left-invariant vector fields X,Y . Moreover,

R(X,Y, Z,W ) = −1
4
([X,Y ], [Z,W ]),

for left-invariant vector fields X,Y, Z,W .
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(4) let h be a bi-invariant riemannian metric. show that

(a) the geodesics on G are precisely the integral curves of the left-
invariant vector fields.

(b) the exponential map for the lie group coincides with the exponen-
tial map of the levi-civita connection.

Exercise 65. the heisenberg group with its lie algebra is

G =


 1 a c

1 b

1

∣∣∣∣∣∣ a, b, c ∈ R

 , g =


 x z

y

∣∣∣∣∣∣ x, y, z ∈ R

 .

a basis for the lie algebra is

X =

 1
 , Y =

 1

 , Z =

 1
 .

(1) show that the only non-zero brackets are [X,Y ] = −[Y,X] = Z.

(2) consider a left-invariant metric with {X,Y, Z} an onb. show that the
ricci tensor has both negative and positive eigenvalues.

(3) show that the scalar curvature is constant.

(4) show that the ricci tensor is not parallel.

2. The Bochner technique

2.1. Killing vector fields

Bochner formula for smooth functions

Proposition 66. Let f :M → R be a smooth function over (M, g), then
1

2
∆g|∇f |2 = |Hess f |2 + Ric(∇f,∇f) + g(∇∆gf,∇f).

Curvature and Killing vector fields

Definition 67 (Killing vector field). LXg = 0 (the flow is isometric).

Using Koszul formula, we can show

g((LX∇)YZ,W ) = 0, i.e. LX∇ = 0.
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which gives a useful relation

R(X,Y )Z +∇2
Y,ZX = 0.

It can also be stated and proven in terms of coefficients.

gil∇j∇kX
i +RijklX

i = 0.

Theorem 68. Let X be a Killing vector field, f = 1
2 |X|

2,

(1) ∇f = −∇XX;

(2) For any vector field V ,

Hess f(V, V ) = g(∇VX,∇VX)−R(V,X,X, V ).

In particular,
∆gf = |∇X|2 − Ric(X,X).

Theorem 69. Let (M, g) be a compact Riemannian manifold

(1) if Ric < 0, then M has no non-trivial Killing vector field.

(2) (Bochner) if Ric ⩽ 0, then a vector field is parallel iff it is Killing.

The following theorem is proven using “linear algebra”.

Theorem 70. Let (M, g) be a compact Riemannian manifold with pos-
itive sectional curvature. If M is of even dimension, then every Killing
field has a zero.

Remark 71. There are examples of non-vanishing Killing vector fields
if M is odd, e.g. Vx = (x2,−x1, · · · , x2n,−x2n−1) on S2n−1.

Exercise 72 (conformal killing vector field). a vector field X is a confor-
mal killing vector field if LXg = fg for some smooth function f :M → R.

(1) show that f = 2 divX.

(2) show that

1

2
∆g|X|2 = |∇X|2 − Ric(X,X)−

(
1− 2

n

)
〈∇ divX,X〉 .

(3) let (M, g) be a closed Riemannian manifold with Ric < 0, show that
there are no non-zero conformal killing fields.
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2.2. Harmonic 1-forms

Bochner formula for harmonic 1-forms

Proposition 73. Let (M, g) be a compact Riemannian manifold, α ∈
Ω1(M) be a harmonic form, then

1

2
∆g|α|2 = |∇α|2 + Ric(α♯, α♯).

For general 1-form α, the Bochner formula is
1

2
∆g|α|2 = −g(∆α, α) + |∇α|2 + Ric(α♯, α♯).

where ∆ is the Hodge laplacian.

Theorem 74. Suppose (M, g) is a compact Riemannian manifold of
non-negative Ricci curvature.

(1) Every harmonic 1-form is parallel. Hence b1(M) ⩽ dimM .

(2) If Ric > 0, then b1(M) = 0.

2.3. Smooth maps

Proposition 75. Let f : (M, g)→ (N, h) be a smooth map, then
1

2
∇g|df |2 = (∇̂∆f, df) + |∇̃df |2 + gikgjlhαβ Ricij fαk f

β
l

− gijgklRαβγδf
α
i f

δ
j f

β
k f

γ
l .

3. Jacobi fields

3.1. Variation formulae and Jacobi fields

Variations

Fix p, q ∈ (M, g), a < b ∈ R, let L be the space of smooth curves
γ : [a, b]→M with γ(a) = p, γ(b) = q.

Definition 76 (energy). For γ ∈ L, E(γ) :=
∫ b

a

∣∣γ∗ d
dt
∣∣2 dt .

Definition 77 (proper variation). A proper variation of γ is a smooth
map α : [a, b]× (−ε, ε)→M with α(·, s) ∈ L, α(·, 0) = γ.
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Proposition 78 (definition of variational field). Let X ∈ Γ([a, b], γ∗TM)
with Xa = Xb = 0, then there exists a proper variation α of γ with

α∗
∂

∂s

∣∣∣∣
s=0

= X.

X is called the variational vector field of α.

Theorem 79 (1st variation formula). Let α be a proper variation of γ
with V the variational vector field, then

d
ds

∣∣∣∣
s=0

E(α(·, s)) =
∫ b

a

〈
∇̂ d

dt
V, γ′

〉
dt = −

∫ b

a

〈
V, ∇̂ d

dt
γ′
〉
dt .

We can similarly consider the 2nd variation: α(t, s1, s2) : [a, b] ×
(−ε1, ε1)× (−ε2, ε2)→M,α(t, 0, 0) = γ(t) with variational fields

α∗
∂

∂s1

∣∣∣∣
s1=s2=0

= V, α∗
∂

∂s2

∣∣∣∣
s1=s2=0

= W.

Theorem 80 (2nd variation formula). Let α be a proper 2nd variation
with V,W the variational vector fields.

∂2

∂s1∂s2

∣∣∣∣
s1=s2=0

E(α(·, s1, s2)) =
∫ b

a

〈
∇̂ d

dt
V, ∇̂ d

dt
W
〉
dt

−
∫ b

a

R(V, γ′, γ′,W ) dt

−
∫ b

a

〈(
∇ ∂

∂s1

α∗
∂

∂s2

)∣∣∣∣
s1=s2=0

, ∇̂ d
dt
γ′

〉
dt .

Remark 81. An important case is when s1, s2 coincide, which occurs in
the proof of Synge and Weinstein-Synge theorems.

Jacobi fields

Definition 82 (Jacobi field). Let γ : [a, b] → (M, g) be a geodesic. A
vector field J along γ is called a Jacobi field if

∇̂∇̂J +R(J, γ′)γ′ = 0.

Proposition 83 (local expansion of the length). Let f(t) = |J |2, where
J is a Jacobi field along a geodesic γ, then

f(t) = t2 − 1

3
R(J ′, γ′, γ′, J ′)|0t4 +O(t6).
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Acturally, Proposition 83 implies Theorem 33.

Theorem 84 (characterization of a Jacobi field). Every Jacobi field is
given by some variation along some geodesic. Let (M, g) be a Riemannian
manifold, γ : [0, 1]→M be a geodesic, then the Jacobi field along γ with
J(0) = 0 and J ′(0) = v is given by

J = α∗
∂

∂s

∣∣∣∣
s=0

, α = expγ(0)(t(γ′(0) + sv))

for s small enough. In particular,

J(t) = (expγ(0))∗,tγ′(0)(tv).

The following result can be proved using normal coordinates.

Proposition 85. Let (M, g) be a complete Riemannian manifold, p ∈
M,γ : [0, b] → M\ cut(p) a unit-speed geodesic with γ(0) = p, and r the
distance from p. If J is a normal Jacobi field along γ with J(0) = 0, then

Hr(J(t)) = J ′(t), H(γ′(t)) = 0.

In particular,

Hess r(J,W )|s =
∫ s

0

〈J ′,W ′〉 − R(J, γ′, γ′,W ) dt ,

for any vector field W along γ with W (0) = 0.

Exercise 86. let σ : (−ε, ε) → (M, g) be a smooth curve and V (s) ∈
Γ((−ε, ε), σ∗TM). consider

α(t, s) = expσ(s)(tV (s)).

compute the variational vector field W (t) = α∗
∂
∂s

∣∣
s=0

and point out
W (0), ∇̂ d

dtW (0).

3.2. Conjugate loci and cut loci

Definition 87 (conjugate locus). Let γ : I → (M, g) be a geodesic with
p = γ(a), q = γ(b). We say p, q are conjugate along γ if there is a non-
trivial Jacobi field along γ with J(a) = J(b) = 0. Write the cut locus
conj(p) for the set of all conjugate points of p along some geodesic.

Theorem 88. Let v ∈ Ep, γv(t) = expp(tv), q = γv(1), then v is a critical
point of expp : Ep →M iff q is conjugate to p along γv.
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Definition 89 (cut time, cut locus). Define the cut time of (p, v) by

tcut(p, v) = sup{b | γv|[0,b] is a minimal geodesic},

and the cut point along γv by γv(tcut(p, v)). Define the cut locus cut(p)
by the set of all cut points of p.
Theorem 90. Let (M, g) be a complete Riemannian manifold, p ∈
M, v ∈ TpM with |v| = 1, and c = tcut(p, v).
(1) If 0 < b < c, then γv|[0,b] has no conjugate points and is the unique

minimal unit-speed geodesic between p and γv(b).
(2) if c <∞, then γv|[0,c] is minimal. One or both of the followings hold:

(a) γv(c) is conjugate to p along γv;
(b) there are two or more unit-speed geodesics between p and γv(c).

Example 91. (1) For p ∈ Sn, conj(p) = cut(p) = {−p}.
(2) For p ∈ RPn, conj(p) = {p}, cut(p) ' Sn−1.
(3) For p = (x, y) ∈ S1 × R, conj(p) = ∅, cut(p) = {−x} × R.
(4) For p ∈ Tn, cut(p) ' ∂([0, 1]n).
Exercise 92. let (M, g) be a complete Riemannian manifold, p ∈ M .
suppose there exists some q ∈ cut(p) with d(p, q) = d(p, cut(p)).
(1) show that either q is conjugate to p, or there are exactly two unit-

speed minimal geodesics γ1, γ2 : [0, b] → M between p and q with
γ′1(b) = −γ′2(b), where b = d(p, q).

(2) if injp(M) = inj(M), and q is not conjugate to p along any minimal
geodesic, show that there is a closed unit-speed geodesic γ : [0, 2b]→
M such γ(0) = γ(2b) = p and γ(b) = q, where b = d(p, q).

There are many related topics like Morse index theorem, skeleton and
cellular structure given by Morse theory, etc. To be added someday.

4. Curvature and topology

4.1. Spaces of non-positive sectional curvature

Theorem 93 (Cartan-Hadamard). Let (M, g) be a complete Riemannian
manifold with non-positive sectional curvature. For any p ∈ M , expp :

TpM →M is a covering map. The universal covering M̃ ∼= Rn.
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Corollary 94. Suppose M,N are compact smooth manifolds. If one of
them is simply-connected, then M × N does not admit a Riemannian
metric with non-positive sectional curvature.
Theorem 95 (characterization of CH manifolds). Let (M, g) be a simply-
connected complete manifold. The followings are euqivalent.
(1) M has non-positive sectional curvature;
(2) The differential of exponential map is length increasing, i.e.

|(expp)∗,v(ṽ)| ⩾ |ṽ|
for all p ∈M, v, ṽ ∈ TpM .

(3) The exponential map is distance increasing, i.e.

dg(expp(v), expp(ṽ)) ⩾ |v − ṽ|
for all p ∈M, v, ṽ ∈ TpM .

Moreover, if the conditions are satisfied, then the exponential map is
diffeomorphic.
Exercise 96. let (M, g) be a ch manifold, p ∈M .
(1) fix v, ṽ ∈ TpM , show that for 0 < t ⩽ T ,

|v − ṽ| ⩽
d(expp(tv), expp(tṽ))

t
⩽
d(expp(Tv), expp(T ṽ))

T
.

(2) let f(x) = 1
2d(x, p)

2, show that f is strictly geodesically convex, i.e.
for any non-trivial geodesic γ : [0, 1]→M ,

f(γ(t)) < (1− t)f(γ(0)) + tf(γ(1)).

Theorem 97 (Cartan). Let (M, g) be a CH manifold, G a compact Lie
group acting smoothly and isometrically on M , then G has a fixed point.
Theorem 98 (Cartan). Let (M, g) be a complete Riemannian manifold
with non-positive sectional curvature, then π1(M) is torsion free.

4.2. Spaces of negative sectional curvature

Proposition 99. Let (M, g) be a complete Riemannian manifold with
non-positive sectional curvature and π : M̃ →M the universal covering.
If γ̃ : R→ M̃ is a common axis for all elements of Autπ(M̃), then M is
not compact.
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Exercise 100. let (M, g) be a closed riemannian manifold of dimension
⩾ 2 with negative sectional curvature. let M̃ be its universal, Γ = π1(M)

can be identified as a subgroup of Isom(M̃) by deck transformations.
(1) show that there are γ1, γ2 ∈ π1(M) with different axes.

(2) show that the centralizer of Γ ⊂ Isom(M̃) is trivial.
Theorem 101 (Preissmann). Let (M, g) be a compact Riemannian man-
ifold with negative sectional curvature.
(1) Any non-trivial abelian subgroup of π1(M) is isomorphic to Z.

(2) π1(M) is not abelian.
Corollary 102. Suppose M,N are compact cmooth manifolds. Then
M × N does not admit a Riemannian metric of negative sectional cur-
vature.
Theorem 103. Let (M, g) be a compact Riemannian manifold with neg-
ative sectional curvature.
(1) (Byers) Any non-trivial solvable subgroups of π1(M) is isometric to

Z. In particular, π1(M) is not solvable.

(2) Any subgroup of π1(M) which contains a non-trivial abelian normal
subgroup is isomorphic to Z.

There are many further topics like Milnor’s exponential-growth of fun-
damental group, CAT(⩽ 0) geometry, etc. To be added someday.

4.3. Spaces of non-negative curvature

Theorem 104 (Myers). Let (Mn, g) be a complete manifold. If

Ric ⩾ (n− 1)g

R2

then diam(M, g) ⩽ πR. In particular, M is compact and π1(M) is finite.
(Cheng) If diam(M, g) = πR, then M is isometric to (Sn, gcan).

Exercise 105. for (R2, ga = ea(x
2+y2)(dx⊗ dx+ dy ⊗ dy)),

(1) compute the curvatures, conclude that it is Einstein;

(2) show that if a ⩾ 0, then it is complete;

(3) show that if a < 0, then it is not complete.
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Theorem 106 (Synge). Let (M, g) be a compact Riemannian manifold
with positive sectional curvature.

(1) If dimM is even and M is orientable, then M is simply connected;

(2) If dimM is odd, then M is orientable.

Corollary 107. Let (M, g) be a compact Riemannian manifold with pos-
itive sectional curvature. If dimM is even and M is not orientable, then
π1(M) = Z/2Z.

For example, RP2×RP2, U(2), U(2)/O(2) do not admit a Riemannian
metric with positive sectional curvature, in each case, the obstruction is
the fundamental group.

Theorem 108 (Weinstein-Synge). Let (Mn, g) be a compact Rieman-
nian manifold with positive sectional curvature. Given an isometry
F : M → M such that F preserve the orientation if n is even, changes
the orientation if n is odd. Then F has a fixed point.

Exercise 109. show that there is no compact manifold that admits both
a metric of positive definite ricci curvature and a metric of non-positive
sectional curvature.

4.4. Space forms

Theorem 110 (Riemann-Hopf-Killing). Let (M, g) be a complete mani-
fold with constant sectional curvature, then it is isometric to a Rieman-
nian quotient of the form M̃/Γ, where M̃ is one of the models spaces

(1) Rn, (2) Sn(r), (3) Hn(r)

and Γ ⊂ Isom(M̃) is discrete and acts freely.

Here is a corollary of the Cartan-Ambrose-Hicks theorem.

Theorem 111. Let (M, gM) be connected, φ, ψ be two local isometries
from M to (N, gN). If there exists some point p ∈ M with φ(p) = ψ(p)
and φ∗,p = ψ∗,p, then φ = ψ.

Corollary 112. Let (M, g) be a connected simply-connected complete
Riemannian manifold. The followings are equivalent.

(1) (M, g) is of constant sectional curvature.
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(2) For every pair of points p, q ∈ M and linear isometry Π : TpM →
TpM , there exists an isometry φ :M →M with φ(p) = q, φ∗,p = Φ.

Corollary 113. Let (M, g) be a complete and of constant sectional cur-
vature 1. If dimM = 2m, then (M, g) is isometric to S2m or RP2m.

For convenience, we write Snk for the n-dimensional space form with
constant sectional curvature k, and

snk(t) =


t , if k=0
1√
k
sin
√
kt , if k > 0

1√
−k sinh

√
−kt , if k < 0

.

Theorem 114 (Jacobi fields in space forms). Let (M, g) be a Riemannian
manifold with constant sectional curvature k, and γ a unit-speed geodesic.
Then a normal Jacobi field J with J(0) = 0 is of the form

J(t) = a snk(t)E(t),

where a is constant, E(t) is any unit parallel vector field with 〈E, γ ′〉 = 0.
Theorem 115. Let U be a geodesic ball around p ∈ Snk , r the distance
from p. Then on U\{p} under the normal coordinates,

g = dr2 + sn2k(r)ĝ,

where ĝ is the induced form on U\{p} by local trivialization.
Corollary 116 (an integral formula). Let U be a geodesic ball of radius
b around p ∈ Snk . If f : U → R is a bounded integrable function, then∫

U

f dVg =
∫
Sn−1

∫ b

0

f ◦ Φ(ρ, ω) snk(ρ)n−1 dρ dVolSn−1 ,

where Φ : R+ × Sn−1 → U\{p}, (ρ, ω) 7→ ρω.
Remark 117. A more general integral formula applies to the Heintze-
Karcher type inequality for embedded hypersurfaces in space forms.
Proposition 118. Let U be a geodesic ball of radius b around p ∈ Snk , r
the distance from p. Then

Hr =
sn′k(r)
snk(r)

πr,

where πr is the projection to the orthogonal complement of ∂r|q. Hence

Hess r = sn′k(r) snk(r)ĝ,
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and
∆gr = (n− 1)

sn′k(r)
snk(r)

, ∆gr
2 = 2 + 2(n− 1)r · sn

′
k(r)

snk(r)
.

5. Comparison theorems of curvatures

5.1. Rauch comparison

Rauch comparison and corollaries

Theorem 119 (Rauch comparison). Let (M, g), (M̃, g̃) be two Rieman-
nian manifolds with dimM ⩽ dim M̃ . Suppose that γ, γ̃ : [0, l]→ M, M̃

are unit-speed geodesics, and

(1) for any t and any planes Σ, Σ̃ ⊆ Tγ(t)M,Tγ̃(t)M̃ with γ′(t), γ̃′(t) ∈
Σ, Σ̃, the sectional curvatures satisfy

KΣ(γ(t)) ⩽ K̃Σ̃(γ̃(t)),

(2) γ̃(0) has no conjugate points along γ̃|(0,l].

Then for any Jacobi fields J, J̃ along γ, γ̃ with initial conditions J(0) =
cγ′(0), J̃(0) = cγ̃′(0), |J ′(0)| = |J̃ ′(0)|, g(J ′(0), γ′(0)) = g̃(J̃ ′(0), γ̃′(0)), we
have |J̃ | ⩽ |J(t)| for all t ∈ [0, l].

A useful case is when (M̃, g̃) is the space form.

Corollary 120 (Jacobi field comparison). Let (M, g) be a complete Rie-
mannian manifold, p ∈ M,U = M\ cut(p).Let γ : [0, b] → U be a unit-
speed geodesic with γ(0) = p and J be any normal Jacobi field along γ
with J(0) = 0. Then

(1) if the sectional curvature KM ⩽ k, then

|J(t)| ⩾ snk(t)|J ′(0)|

(2) if the sectional curvature KM ⩾ k, then

|J(t)| ⩽ snk(t)|J ′(0)|

for all t ∈ [0, b1], where b1 =
{
b , if k ⩽ 0
min{b, πR} , if k = 1

R2 > 0
.

Corollary 121 (conjugate comparison). Let (M, g) be a complete Rie-
mannian manifold with sectional curvature KM ⩽ k.

30



202
4au

tum
n qui

dd
ite

(1) If k ⩽ 0, then M has no conjugate points along any geodesic.

(2) If k = 1
R2 > 0, then there is no conjugate point along any geodesic

shorter that πR.

Corollary 122. Let (M, g) be a complete Riemannian manifold. Suppose
0 < C1 ⩽ KM ⩽ C2, let γ be any geodesic in M and l be the distance
along γ between two consecutive conjugate points on γ, then

π√
C2

⩽ l ⩽ π√
C1

.

In particular, expp has no critical points on B
(
0, π√

C2

)
.

injectivity radius

The following result can be proved using Corollary 122, Exercise 92.

Theorem 123 (Klingenberg’s injectivity radius estimate). Let (M, g) be
a compact Riemannian manifold with KM ⩽ C where C > 0, set

l(M, g) =

∫
{L(γ) | γ is a smooth closed geodesic}.

Then either inj(M) ⩾ π√
C

or inj(M) = l(M,g)
2 .

5.2. Hessian and Laplacian comparisons

Theorem 124 (Hessian comparison). Let (M, g), (M̃, g̃) be two Rie-
mannian manifolds with the same dimension , p ∈ M, p̃ ∈ M̃ , U =
M\ cut(p), Ũ = M̃\ cut(p̃), r, r̃ the distance from p, p̃. Suppose γ, γ̃ :
[0, b]→ U, Ũ are two unit-speed geodesics with γ(0) = p, γ(b) = q, γ̃(0) =
p̃, γ̃(b) = q̃. If for any t and any planes Σ, Σ̃, the sectional curvatures
satisfy

KΣ(γ(t)) ⩾ K̃Σ(γ̃(t)),

then for any vectors X ∈ TqM, X̃ ∈ Tq̃M̃ with |X| = |X̃| = 1 and
X ⊥ γ′(b), X̃ ⊥ γ̃′(b),

Hess r(X,X) ⩽ Hess r̃(X̃, X̃).

In particular,
∆gr|γ(t) ⩽ ∆g̃r̃|g̃(t).

Moreover, if the identity holds for all t, then KΣ(γ(t)) = K̃Σ̃(γ̃(t)).
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Theorem 125 (Laplacian comparison). Let (M, g) be a complete Rie-
mannian manifold, p ∈M,U =M\ cut(p), r the distance from p. If

Ric ⩾ (n− 1)kg

for some constant k, then

∆gr ⩽ (n− 1)
sn′k(r)
snk(r)

on U\{p}. Moreover, if the identity holds on U\{p}, then (M, g) has
constant sectional curvature k.

5.3. Volume comparison

Volume comparison
Write B(p, δ) for the metric ball centered at p, gk the metric with

constant sectional curvature k on B(p, δ)\{p}.
Theorem 126 (Bishop-Gromov). Let (M, g) be a complete Riemannian
manifold with

Ric ⩾ (n− 1)kg,

for some constant k. Then the volume ratio
Volg(B(p, δ))

Volgk(B(p, δ))

is non-increasing for δ ∈ R+, and

lim
δ→0

Volg(B(p, δ))

Volgk(B(p, δ))
= 1.

Moreover, if there exists 0 < δ1 < δ2 ⩽ δ with
Volg(B(p, δ1))

Volgk(B(p, δ1))
=

Volg(B(p, δ2))

Volgk(B(p, δ2))

then Volg(B(p, δ)) = Volgk(B(p, δ)) for δ ∈ [0, δ2] and g is of constant
sectional curvature on B(p, δ2).
Theorem 127 (Zhu). Let (M, g) be a complete Riemannian manifold
with

Ric ⩾ (n− 1)kg,

for some constant k. Then for 0 ⩽ δ1 < min{δ2, δ3} ⩽ max{δ2, δ3} < δ4,
Volg(B(p, r4))− Volg(B(p, r3))

Volgk(B(p, r4))− Volgk(B(p, r3))
⩽ Volg(B(p, r2))− Volg(B(p, r1))

Volgk(B(p, r2))− Volgk(B(p, r1))
.
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Proposition 128 (Gromov). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric ⩾ (n−1)kg for some constant k > 0. Then

Volg(M) ⩽ Volgk
(
Sn(

1√
k
)

)
.

If the equality holds, then (M, g) is isometric to Sn
(

1√
k

)
.

Proposition 129 (Cheng). Let (M, g) be a complete Riemannian man-
ifold of dimension n with Ric ⩾ (n − 1)kg for some constant k > 0. If
diamM = π√

k
, then (M, g) is isometric to Sn

(
1√
k

)
.

Combining the divergence theorem, Theorem 66, Proposition 129, we
can show the following results.
Theorem 130. Let (M, g) be a compact orientable Riemannian manifold
of dimension n ⩾ 2. Suppose Ric ⩾ λg > 0.
(1) (Lichnerowicz) The first non-zero eigenvalue λ1 of the Hodge lapla-

cian ∆ = dd∗ + d∗d satisfies

λ1 ⩾
n

n− 1
λ.

(2) (Obata) If λ1 = n
n−1λ, then (M, g) is isometric to the round sphere(

Sn
(√

n−1
λ

)
, gcan

)
.

Theorem 131 (Bishop-Yau). Let (M, g) be a complete non-compact Rie-
mannian manifold of dimension n with Ric ⩾ 0. Then

cnVolg(B(p, 1))r ⩽ Volg(B(p, r)) ⩽ Volg1(B(p, r)) =
Vol(Sn−1)

n
rn,

for some positive constant cn depending only on n and large r.

5.4. The splitting theorem

Theorem 132 (Cheeger-Gromoll). Let (M, g) be a complete Riemannian
manifold of dimension n with Ric g ⩾ 0. If there is a geodesic line in M ,
then (M, g) is isometric to R×N, gR ⊕ gN , where Ric gN ⩾ 0.
Corollary 133. Let (M, g) be a complete Riemannian manifold with
Ric ⩾ 0.
(1) (M, g) is isometric to (Rk ×N, gRk ⊕ gN), where N does not contain

a geodesic line and Ric gN ⩾ 0.
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(2) The isometry group splits

Isom(M, g) ∼= Isom(Rk, gRk)× Isom(N, gN).

Definition 134 (Bieberbach group). A subgroup Bn of Isom(Rn, gcan) =
O(n) ⋊ Rn is a Bieberbach group if it acts freely on Rn and Rn/Bn is a
compact manifold.

Theorem 135 (structure of manifolds with Ric ⩾ 0). Let (M, g) be a
compact Riemannian manifold with Ric ⩾ 0, and π : (M̃, g̃)→ (M, g) its
universal covering with pull-back metric.

(1) There exists some integer k ⩾ 0 and a compact Riemannian manifold
(N, gN) with Ric gN ⩾ 0 such that (M̃, g̃) is isometric to (Rk×N, gRk⊕
gN).

(2) The isometry group splits

Isom(M, g) ∼= Isom(Rk, gRk)× Isom(N, gN).

(3) There exists a finite normal subgroup G of Isom(N, h), a Bieberbach
group Bk and an exact sequence

0→ G→ π1(M)→ Bk → 0.

Corollary 136. Let (M, g) be a compact Riemannian manifold with
Ric ⩾ 0, and π : (M̃, g̃) → (M, g) its universal covering with pull-back
metric.

(1) If M̃ is contractible, then (M̃, g̃) is isometric to (Rn, gRn) and (M, g)
is flat.

(2) If (M̃, g̃) does not contain a line, then π1(M) is finite and b1(M) = 0.

(3) If π1(M) is finite, then M̃ is compact and b1(M) = 0.

Corollary 137. Let (M, g) be a compact Riemannian manifold with
Ric ⩾ 0. If there exists some point p ∈ M such that Ricp > 0, then
π1(M) is finite and b1(M) = 0.

Corollary 138. Let (M, g) be a compact Riemannian manifold with
Ric ⩾ 0, and dimM = n. Then b1(M) ⩽ n. Moreover, b1(M) = n
iff (M, g) is flat.

Corollary 139. S3 × S1 can not admit Ricci flat metrics.
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Exercise 140. suppose (Mn, g) is compact with b1 = k. if Ric ⩾ 0, show
that the universal covering splits:

(M̃, g) = (N, h)× (Rk, gRn).

give an example where b1 < n and (M̃, g) = (Rn, gRn).

6. Gathering important results

(1) Koszul formula

(2) for 3-dim manifolds, Einstein implies CSC.

(3) volume expression of the Laplacian {see 10}

(4) symmetry and orthogonality of the 2nd fundamental form

(5) Gauss’ lemma {see 24}

(6) Hopf-Rinow theorem {see 30}

(7) local expansion of metric {see 33}

(8) properties of the radial vector field and corollaries {see 36}

(9) expression of d∗ {see 44}

(10) divergence theorem {see 1.8}

(11) Ricci identity {see 57}

(12) 2nd Bianchi identity {see 60}

(13) Schur’s lemma {see 61}

(14) Bochner formula for smooth functions {see 66}

(15) Bochner formula for Killing vector fields{see 68}

(16) Bochner formula for harmonic 1-forms {see 73}

(17) *Bochner formula for smooth maps {see 75}

(18) 1st and 2nd variation of the energy

(19) characterization of the Jacobi field {see 84}

(20) index theorem and topology

(21) Cartan-Hadamard theorem {see 93}
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(22) characterization of CH manifolds {see 95}

(23) Cartan’s fixed point and torsion free theorem {see 97, 98}

(24) Preissmann theorem {see 101}

(25) Byers theorem {see 103}

(26) no product manifold admits a metric of negative sectional curvature

(27) Myers theorem {see 104}

(28) Synge theorem {see 106}

(29) Weinstein-Synge theorem {see 108}

(30) Riemann-Hopf-Killing theorem {see 110}

(31) properties of space of CSC

(32) Rauch comparison and corollaries

(33) Hessian and Laplacian comparisons

(34) volume comparison

(35) proof of Cheng’s rigidity theorem

(36) Lichnerowicz-Obata eigenvalue inequality and rigidity

(37) Cheeger-Gromoll splitting theorem and corollaries

(38) structure of manifolds with Ric ⩾ 0.

A. Isometry and local isometry

Definition 141 ((local) isometry). Let φ : (M, gM)→ (N, gN) be smooth.

(1) φ is called a local isometry if φ∗,p : TpM → Tφ(p)M is a linear
isometry for every p ∈M , or equivalently, gM = φ∗gN .

(2) φ is called an isometry if φ is surjective and preserve the distance.

List of properties:

• if φ is a local isometry, then φ is totally geodesic;

• for smooth curve γ : [a, b] → M and γ̃ = φ ◦ γ, γ is a geodesic iff γ̃
is a geodesic.
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Theorem 142. Let φ : (M, gM)→ (N, gN) be smooth and bijective. The
followings are equivalent
(1) φ is an isometry.
(2) φ is a diffeomorphism and a local isometry.
(3) φ is a diffeomorphism and for every smooth curve γ : [a, b]→M ,

length(φ ◦ γ) = length(γ).

Exercise 143. prove the theorem above.

B. Covering maps and transformations

Riemannian covering maps
Definition 144 (Riemannian covering map). A smooth covering map π :

(M̃, g̃)→ (M, g) is a Riemannian covering map if it is a local isometry.
Theorem 145. Suppose π : (M̃, g̃)→ (M, g) is a local isometry.
(1) If (M̃, g̃) is complete, then π is a Riemannian covering map and

(M, g) is complete.

(2) If π is a covering map, then (M, g) is complete iff (M̃, g̃) is complete.
Deck transformations

Definition 146 (deck transformation). Let π : M̃ →M be the universal
covering of M . A deck transformation F : M̃ → M̃ is a homeomorphism
such that π ◦ F = F , enote by Autπ(M̃) the set of deck transformations
Theorem 147. (1) π1(M) ∼= Autπ(M̃);

(2) Autπ(M̃) acts smoothly freely and properly on M̃ ;

(3) Autπ(M̃) acts transitively on each fiber of π.

C. Axes, rays and lines

Free homotopy class
Definition 148. Two loops γ0, γ1; [0, 1] → M are said to be freely ho-
motopic if they are homotopic through closed paths, i.e. there exists a
homotopy H(s, t) : [0, 1]× [0, 1]→M such that

H(0, t) = γ0(t), H(1, t) = γ1(t) and H(s, 0) = hH(s, 1).
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Axes

Definition 149 (axis of an isometry). Let (M, g) be complete, F :M →
M be an isometry. A geodesic R→ M is called an axis of F if F ◦ γ is
a non-trivial translation of γ, i.e.

F (γ(t)) = γ(t+ c)

for some constant c 6= 0. F is axial if it has an axis.
Lemma 150. Let (M, g) be complete, F be an isometry. If δF (p) =
d(p, F (p)) has a positive minimum, then F has an axis.

Theorem 151. Let (M, g) be a compact Riemannian manifold, F : M̃ →
M̃ be a non-trivial deck transformation of π : M̃ →M .
(1) δF has a positive minumum and δF ≥ 2 inj(M), thus F is axial.

(2) The axis corresponding to this minimum is mapped under π to a
closed geodesic, whose length is minimal in its free homotopy class.

Exercise 152. suppose (M, g) is a compact connected riemannian man-
ifold. every non-trivial free homotopy class in M is represented by a
closed geodesic that has minimum length among all admissible loops in
the given free homotopy class.

Geodesic rays

Definition 153 (geodesic ray). A geodesic ray is a unit-speed geodesic
γ : [0,∞)→M such that d(γ(s), γ(t)) = |s− t| for any s, t ⩾ 0.
Lemma 154. Let (M, g) be a complete Riemannian manifold. The fol-
lowings are equivalent.
(1) M is non-compact.

(2) For any p ∈M , there is a geodesic ray starting from p.
Proposition 155 (definition of Busemann function). Let (M, g) be a
complete Riemannian manifold, γ : [0,∞)→M be a geodesic ray starting
from a point p. Define

btγ(x) = d(x, γ(t))− t = d(x, γ(t))− d(γ(0), γ(t))

then btγ(x) is non-increasing for t. Define the Busemann function by

bγ(x) = lim
t→∞

btγ(x).
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List of properties:

• |btγ(x)| ⩽ d(x, γ(0));

• |btγ(x)− btγ(y)| ⩽ d(x, y).

Exercise 156. compute the busemann functions on the upper half plane
H2 with canonical metric of constant sectional curvature −1.

Geodesic lines

Definition 157 (geodesic line). A geodesic line is a unit-speed geodesic
γ : R→M such that d(γ(s), γ(t)) = |s− t| for any s, t ∈ R.

Lemma 158. Let (M, g) be a connected complete non-compact manifold.
If M contains a compact subset K such that M\K has at least two
un-bounded components, then there is a geodesic passing through K.
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