Topics in differential geometry: a reading report

1. Introduction

The main material of this project is [MR91]. The idea of that paper is
to adopt the method in [HK78] and give a new proof of the Alexandrov
type theorem for the r-th mean curvature. Moreover, this approach can
also be used for hypersurfaces in hyperbolic space and upper semi-sphere,
after some modifications. The main work of the report besides typing
is filling in some ommitted details of [MR91], especially the proof of the
spherical case.

2. Preliminaries

MEAN CURVATURE

Let x : M™ — R""1(c) be an immersed compact orientable hypersur-
face, ki, -+, k, the principal curvatures.

Definition 1 (r-th mean curvature). The r-th mean curvature H, is
defined by

Pu(t) = (1+thy) - (1 +thy) =1+ (7;) Hit+ -+ (Z) Ham (1)

For example, H; is the mean curvature, Hs, up to a constant, is the
scalar curvature, and H,, is the Gauss curvature.
Here is an important lemma from the inequalities in [Gar59].

Lemma 2. Suppose k; are all positive at some point in M.
(1) If H, > 0 everywhere on M, then so is for Hy, 1 <k <r — 1.
(2) We have

k—1

1
H* < Hp, H <H. (2)
Moreover, for k > 2, the equality holds only at umbilical points.

THE EXISTENCE OF CONVEX POINT

Lemma 3. Let x : M" — R""(c) be an immersed compact orientable
hypersurface,

(1) For ¢ =0, there is a point in M, where all the principal curvatures
are positive.



(2) For ¢ =1, suppose imx C Sﬁ“, there is a point in M, where all the
principal curvatures are positive.

(8) For ¢ = —1, there is a point in M, where all the principal curvatures
are greater than 1.

Remark 4. For example,
e if c =0, since M is compact, we can take a sphere tangent to M,
o if c =1, take the point where the height (x,a) attains mazximum;
e if c = —1, take the point where distance of H"* attains mazimum.
AN INTEGRATION FORMULA

Let o : M™ — R""1(c) be an embedded compact hypersurface, N the
inner unit normal vector field, €2 the compact domain with 92 = M.

Lemma 5 ([Cha95]). Suppose the volume element of R"™ has the ex-
PTESSLon
dvol = exp, ) (tN(p)) = F(p,t) dt dA,

then we have an integration formula

c(p)
/Q  dvol = /M / F(expay (NP F(p.t)dt A (3)

where c is the cut function of M.

3. The Euclidean case

Let z : M™ — R"*! be an immersed compact orientable hypersurface,
N the inner unit normal vector field. By direct calculation,

Az, x) = 2(D{x,e;));
= 22%((62', e;) + (x, ea>h%) =2n(1+ H{x, N)).

Using divergence theorem,

/ (1+ Hi(z, N))dA = 0. (4)

Lemma 6 (Minkowski formulae). Let x : M™ — R™! be an immersed
compact orientable hypersurface, N the inner unit normal vector field,
then for 1 < r < n, we have

/ (H. 1 + Hy(x, NY)dA = 0. (5)
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Proof. (From [Hsi56]) For small number ¢, consider hypersurface

r1(p) = expy(,) (—tN(p)) = z(p) — tN(p). (6)

Since t is small, N is also a unit normal vector field for z;, and the
principal directions are given by

xye; = (1 +thky)e;, 1 <i < n. (7)

where e; are the principal directions for x. Thus (1 + tk;)k;(t) = k;. For
the area element,

dA; = (1+thy) -+ (1 + thy) dA = P, (¢) dA. (8)

For the mean curvature,

() =2 2 1+ th nPn((z)' ()

So we have by (4), (8), (9)
0— /Mn(1+H1(t)<x,N>)dAt
= [ R0 + Pito@ =8, V)) a4 (10)

_Z/ ( )Htl (?)iHiti_l(<x,N> — 1) dA.

Regarding both sides as polynomials of ¢, we can solve

/ (H,_y + H, (2, N))dA = 0 (11)

for 1 <r < n. []

Theorem 7 (Heintze-Karcher inequality [HK78, MR91]). Let z : M"™ —
R be an embedded compact hypersurface. If Hy > 0 everywhere on M,
then we have

/ —dA > (n+ 1)vol(Q) (12)

where ) is the compact domazn with 02 = M. Moreover, the equality
holds if and only if M"™ is a round sphere.

Proof. Recall that x; = exp,(,)(tN(p)) = x(p) + tN(p) here, we have
dV(x +tN) = (1 —thky)--- (1 — tk,) dt dA. (13)
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Using (3) for f(z) =

vol () / / (1—thy) - (1 — thy,) dt dA. (14)

Note that ¢(p) < k < m since the normal geodesic is well-defined
before reaching the focal point. And as an algebraic inequality,

(1 —thky)--- (1 —thy) < (1 —tHy)" (15)
Then from (14)

4),
vol(§2 / / (1 —tHy) dtdA—

The equality holds if (15) holds, which means M is totally umbilical. [

Theorem 8 ([MRI1]). Let x : M"™ — R"™ be an embedded compact
hypersurface. If H, is constant for some 1 < r < n, then M is a round
sphere.

(16)

Proof. From Lemma 3, there is a convex point in M, thus H, is a positive
constant. Let €2 be the compact domain with 02 = M. Using Lemma

2, we have HT% <H,H 12> HTT%1 Together with Lemma 6, we get
0= / (H—1+ H,{(x,N))dA
M
> [+ v aa (17)
M
—H | (14 Hy (z, N))dA.

M

Recall that from divergence theorem,

(n+ 1)vol(Q2) + / (x, N)dA = 0. (18)
S0 1
0 > area(M) — (n+ 1)H; vol(Q). (19)
Using Theorem 7,
(n + )H vol(§2) < area(M). (20)

Thus the equality in (20) holds, and hence M is totally umbilical by the
rigidity of Theorem 7. [



4. The hyperbolic case

Let R?™ be the real vector space R"*2 endowed with the Lorentzian

metric
<$, y> = —ZoYo T+ T1Y1 + -+ + Tpt1Yn+1-

The hyperbolic space R"*}(—1) can be regarded as H"™' = {z €
R |z)> = —1,79 > 1}, with the induced positive-definite metric.
Then an immersed compact orientable hypersurface z : M — H"*! can
be viewed as x : M — R with |2|> = —1,29 > 1. Let N be the inner
unit normal vector field, a € R?”. By direct calculation,

Az, a) = (D{ei, a));
= Z%‘((ei, a) + (ea, a)hs) = n({z, a) + Hi(N,a)).

Using divergence theorem,

Aﬁ@@ﬂJﬁ@MMdA:Q (21)

Lemma 9 ([MR91)). Let = : M™ — H"™' be an immersed compact
orientable hypersurface, N the inner unit normal vector field, then for
1 <r < n and arbitrary a € R’f”, we have

/Xﬂgﬂ@ay+HxNﬂmdA:o. (22)
M
Proof. For small number ¢, consider hypersurface

z1(p) = expy,) (—tN(p)) = x(p) cosht — N(p) sinh . (23)

By solving Jacobi field equation, the unit normal vector field is given by
Ny = —xsinht 4+ N cosht, and the principal directions are given by

xy€; = (cosht + k;sinht)e;, 1 <i<n (24)

where e; are the principal directions for z. Thus (cosht+ k; sinh t)k;(t) =
sinht + k; cosht. For the area element,

dA; = (cosht + kysinht)--- (cosht + k, sinht)dA

25
= cosh"t - P,(tanht)dA. (25)
For the mean curvature,
1 sinht + k;cosht 1 tanht + k;
H{(t) = — —
1(t) nZCOSht—f—kiSinht nzlJrkitanht (26)

_ ncoshtsinht - P,(tanht) + P, (tanht)
B ncosh?t - P,(tanht)
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So we have by (21), (25), (26),
0 :/Mn((a:t,@ +H ()N, a)) d A,
= /M ncosh®t - P,(tanht)(x cosht — Nsinht,a) dA
+ /M(n coshtsinht - P,(tanht) + P! (tanht))(—x sinht + N cosht,a) dA

:/ (nP,(tanht)(z,a) + P/ (tanht)(—x tanht + N, a)) dA.
M

(27)
Regarding both sides as polynomials of tanh ¢, we can solve
/(Hr (2, a) + H(N,a)) dA = 0 (28)
M
for1 <r < n. []

Definition 10. We define a positive function p, : (1,00) = (0,00) with
parameter n € N by

coth
pn(u) = / (cosht — usinht)" cosh t dt. (29)
0

We have the following Heintze-Karcher type inequality.

Theorem 11 ([MRO1]). Let x : M" — H""! be an embedded campact
hypersurface. If H, > 1 everywhere on M, then we have

/M(<x, a) + HE (N, a))pu(HF)dA > 0 (30)

for a € Ry with |a|*> = —1. Moreover, the equality holds if and only if
M is a geodesic sphere.

Proof. Recall that z; = exp, () (tN(p)) = z(p) cosht + N(p) sinh ¢ here,
dV(x cosht + Nsinht) = (cosht — kysinht)--- (cosht — k, sinht) dt dA.

(31)
Note A{x,a) = (n+1){x,a), and V(z,a) = a, from divergence theorem,
(n+1)/(x,a>dv+/(N,a)dA:O. (32)

0 M

Using (3) for f(z) = (n+ 1){z

/( a)dA = n—l—l// (x4, a cosht—k sinh ¢) dt dA.
(33)



From Lemma 3, there is a point in M, where all the principal curvatures
are greater than 1. Using Lemma 2, we have 1 < Hi < H;. Note that
c(p) < coth™ k. < coth™ Hy (p) < coth™? Hr% (p). And as an algebraic
inequality,

H(cosht—k:@- sinht) < (cosht— Hysinht)" < (cosht—Hr% sinht)". (34)
Then from (33),

1
— N A
— |

coth™! H,«% i (35)
< / / (cosht — Hy sinht)"(x;, a) dt dA.
M Jo
1
On the other hand, by taking w = cosht — H/ sinht¢, we can show
coth™ HT% 1 1
(n+1) / (cosht — Hy sinht)"(sinht — H; cosht)dt
0 (36)

0
:/ dw™ = —1.
1

So multiplying by (/V,a) and integrating over M, we have

- /<N,a>dA

1
coth™ ' H 1 L
:/ (N, a)/ (cosht — Hy sinht)"(sinht — Hy cosht)dtdA.
M 0
(37)




Putting together (35) and (37),
coth™ H," 1
0< / / (cosht — Hy sinht)"(z4,a) dtdA

coth HT 1
— / (N,a) / (cosht — H’" sinh )" (sinht — Hy cosht) dt dA

coth™ H’“
/ / (cosht — HT‘ sinh ¢)"

((x cosht + Nsinht,a) — (smht — HT cosht)(N,a))dtdA
1 coth™! H[ 1
= / ({x,a) + HF (N, a)) / (cosht — Hy sinht)"dtdA
M 0

1 1
= / ({x,a) + HF (N, a))p,(Hy) dA.
M
(38)
The equality holds if (34) holds, which means M is totally umbilical. [

Theorem 12 ([MRI1]). Let x : M" — H""! be an embedded campact
hypersurface. If H, is constant for some 1 < r < n, then M is a geodesic
hypersphere.

Proof. From Lemma 3, there is a point in M, where all the principal
curvatures are greater than 1, thus H, is a constant greater than 1. Then

pn(Hﬁ ) is a positive constant. Using Lemma 2, H, 1 > H . Together
with Lemma 9, we get

O:/M(Hr_l(x,@—i—Hr(N,a))dA

> [ 017 (w0 + 1 (.0} a4 (39)
—H (o) + Hi (N, a))dA.

Using Theorem 11,
0< /M ((x,a) + Hy (N, a)) dA. (40)

Thus the equality in (40) holds, and hence M is totally umbilical by the
rigidity of Theorem 11. [



5. The spherical case

Let z : M™ — S™*! be an immersed compact orientable hypersurface,
N the inner unit normal vector field, a € R""2. By direct calculation,

Az, a) = (D{e;, a));
- 25@7’((6@',@} + (€a, a)5;) = n({z,a) — Hi(N,a)).

Using divergence theorem,

/M<< 0) — Hy(N.a)) dA = 0. (41)

Lemma 13 ([MR91, Biv83]). Let x : M™ — S™"! be an immersed com-
pact orientable hypersurface, N the inner unit normal vector field, then
for 1 <r < n and arbitrary a € R""2, we have

/ (Hy—1(z,a) — H.(N,a))dA = 0. (42)
M
Proof. For small number ¢, consider hypersurface

x(p) = expx(p)(—tN(p)) = z(p) cost — N(p) sint. (43)

By solving Jacobi field equation, the unit normal vector field is given by
N; = zsint + N cost, and the principal directions are given by

Ty € = (cost — k;sint)e;, 1 <i<n (44)

where e; are the principal directions of x. Thus (cost — k;sint)k;(t) =
sint — k; cost. For the area element,

dA; = (cost — kysint) - -+ (cost — k, sint) dA

45
= cos" tP,(—tant)dA. (45)
For the mean curvature,
1 sint — k; cost tant —
Hi(t) = — = —
1(t) nzcost—kisint Zl—k tant (46)

ncostsint - P,(—tant) + P/ (— tant)
ncos?t - P,(—tant)




So we have by (41), (45), (46),
0= /Mn(<;r:t, a) + Hi(Ny, a)) dA;
= /Mn(:0th - Py(—tant)(xcost — Nsint,a) dA
+ /M(—n costsint - P,(—tant) — P! (—tant)){xsint + N cost) dA

= / (nP,(—tant)(z,a) — P)(—tant){ztant + N, a)) dA.

(47)
Regarding both sides as polynomials of —tant, we can solve
/ (H—1(z,a) — H-(N,a))dA =0 (48)
M
for 1 <r < n. []

Definition 14. We define a positive functin 1, : (0,00) — (0, 00) with
parameter n € N by

cot !
To(u) = /0 (cost —usint)" costdt. (49)

We have the following Heintze-Karcher type inequality.

Theorem 15 ([MRO1]). Let x : M™ — S be an embedded campact
hypersurface lying in the upper semi-sphere. If H, > 0 everywhere on
M, then we have

/M (2, a) — Hi (N, a))r(HE) dA > 0 (50)
where a is the north pole of S™. Moreover, the equality holds if and
only if M is umbilical.

Proof. Recall that x; = exp, ) (tN(p)) = x(p) cost + N(p)sint here,
dV(zcost+ Nsint) = (cost — kysint)--- (cost — k,sint) dtdA. (51)
Note A(z, a) = —(n+1){(z, a), and V(z, a) = a, from divergence theorem,

(n+1) /Q<x, a)ydV = [ (N,a)dA. (52)

M
Using (3) for f(xz) = (n + 1){

/(N aydA=(n+1 // (x4, a cost—k: sint)dtdA. (53)
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From Lemma 3, there is a convex point in M. Using Lemma 2, we have

1 1
0 < Hy < Hy. Note that ¢(p) < cot™ kpay < cot™ Hi(p) < cot™ H (p).
And as an algebraic inequality

H(cost — k;sint) < (cost — Hysint)" < (cost — H’“ sint)".  (54)
Then from (53),
1 cot™! HT% 3
/ (N,a)dA < / / (cost — Hy sint)"(zy, a) dtdA. (99)
M M Jo

n—+1

1
On the other hand, by taking w = cost — H/ sint, we can show

cot— L HT 1 1
(n+1) / (cost — Hy sint)"(—sint — Hy cost) dt
0

0 (56)
:/ dw™! = —1.
1
So multiplying by (N, a) and integrating over M, we have
1
— / (N,a)dA
cot 1Hr% 1 1 (57)
:/ (N,a) / (cost — Hy sint)"(—sint — Hy cost)dtdA
M 0
Putting together (55) and (57),
cot™ 1H% )
/ / (cost — Hy sint)"(xy,a) dt dA
cot™! H’ 1
+/ (N, a)/ (cost—HT sint)"(—sint — Hy cost)dtdA
(58)

cot™ 1H7"
/ / cost—HTsmt)

((xcost+ Nsint,a) + (—sint — H”" cost)(N,a))dtdA

1

:/ (2, a) — Hi (N, a))r(Hi) dA.
M

The equality holds if (54) holds, which means M is totally umbilical. [

11



Theorem 16 ([MRI1]). Let x : M™ — S™™ be an embedded campact

hypersurface. If H, is constant for some 1 < r < n, then M is a geodesic

hypersphere.

Proof. From Lemma 3, there is a convex point in M, thus H, is a positive
1

constant. Then 7,(H, ) is a positive constant. Using Lemma 2, H, 1 >

r—1
H,™ . Together with Lemma 13, we get

0— /M (H. \(z,a) — H,(N, a))dA

> [ (17 (w.0) — H(N.a)) a4 (59)

= /M(<x,a>—HE<N,a>)dA.

— H,

Using Theorem 15,

0< / ((z,a) — Hi (N,a)) dA. (60)
M
Thus the equality (60) holds, and hence M is totally umbilical by the
rigidity of Theorem 15. [
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