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Topics in differential geometry: a reading report

1. Introduction

The main material of this project is [MR91]. The idea of that paper is
to adopt the method in [HK78] and give a new proof of the Alexandrov
type theorem for the r-th mean curvature. Moreover, this approach can
also be used for hypersurfaces in hyperbolic space and upper semi-sphere,
after some modifications. The main work of the report besides typing
is filling in some ommitted details of [MR91], especially the proof of the
spherical case.

2. Preliminaries

Mean curvature

Let x : Mn → Rn+1(c) be an immersed compact orientable hypersur-
face, k1, · · · , kn the principal curvatures.
Definition 1 (r-th mean curvature). The r-th mean curvature Hr is
defined by

Pn(t) = (1 + tk1) · · · (1 + tkn) = 1 +

(
n

1

)
H1t+ · · ·+

(
n

n

)
Hnt

n. (1)

For example, H1 is the mean curvature, H2, up to a constant, is the
scalar curvature, and Hn is the Gauss curvature.

Here is an important lemma from the inequalities in [Går59].
Lemma 2. Suppose ki are all positive at some point in M .
(1) If Hr > 0 everywhere on M , then so is for Hk, 1 ⩽ k ⩽ r − 1.
(2) We have

H
k−1
k

k ⩽ Hk−1, H
1
k

k ⩽ H1. (2)
Moreover, for k ⩾ 2, the equality holds only at umbilical points.

The existence of convex point

Lemma 3. Let x : Mn → Rn+1(c) be an immersed compact orientable
hypersurface,
(1) For c = 0, there is a point in M , where all the principal curvatures

are positive.
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(2) For c = 1, suppose imx ⊂ Sn+1
+ , there is a point in M , where all the

principal curvatures are positive.
(3) For c = −1, there is a point in M , where all the principal curvatures

are greater than 1.
Remark 4. For example,

• if c = 0, since M is compact, we can take a sphere tangent to M ;
• if c = 1, take the point where the height ⟨x, a⟩ attains maximum;
• if c = −1, take the point where distance of Hn+1 attains maximum.

An integration formula
Let x : Mn → Rn+1(c) be an embedded compact hypersurface, N the

inner unit normal vector field, Ω the compact domain with ∂Ω = M .
Lemma 5 ([Cha95]). Suppose the volume element of Rn+1 has the ex-
pression

dvol = expx(p)(tN(p)) = F (p, t) dt dA,
then we have an integration formula∫

Ω

f dvol =
∫
M

∫ c(p)

0

f(expx(p)(tN(p)))F (p, t) dt dA (3)

where c is the cut function of M .

3. The Euclidean case

Let x : Mn → Rn+1 be an immersed compact orientable hypersurface,
N the inner unit normal vector field. By direct calculation,

∆⟨x, x⟩ = 2(D⟨x, ei⟩)i
= 2

∑
i

δij(⟨ei, ej⟩+ ⟨x, eα⟩hα
ij) = 2n(1 +H⟨x,N⟩).

Using divergence theorem,∫
M

(1 +H1⟨x,N⟩) dA = 0. (4)

Lemma 6 (Minkowski formulae). Let x : Mn → Rn+1 be an immersed
compact orientable hypersurface, N the inner unit normal vector field,
then for 1 ⩽ r ⩽ n, we have∫

M

(Hr−1 +Hr⟨x,N⟩) dA = 0. (5)
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Proof. (From [Hsi56]) For small number t, consider hypersurface

xt(p) = expx(p)(−tN(p)) = x(p)− tN(p). (6)

Since t is small, N is also a unit normal vector field for xt, and the
principal directions are given by

xt,∗ei = (1 + tki)ei, 1 ⩽ i ⩽ n. (7)

where ei are the principal directions for x. Thus (1 + tki)ki(t) = ki. For
the area element,

dAt = (1 + tk1) · · · (1 + tkn) dA = Pn(t) dA. (8)

For the mean curvature,

H1(t) =
1

n

∑ ki
1 + tki

=
P ′
n(t)

nPn(t)
. (9)

So we have by (4), (8), (9)

0 =

∫
M

n(1 +H1(t)⟨x,N⟩) dAt

=

∫
M

(nPn(t) + P ′
n(t)⟨x− tN,N⟩) dA

=
∑
i

∫
M

n

(
n

i

)
Hit

i +

(
n

i

)
iHit

i−1(⟨x,N⟩ − t) dA.

(10)

Regarding both sides as polynomials of t, we can solve∫
M

(Hr−1 +Hr⟨x,N⟩) dA = 0 (11)

for 1 ⩽ r ⩽ n.

Theorem 7 (Heintze-Karcher inequality [HK78, MR91]). Let x : Mn →
Rn+1 be an embedded compact hypersurface. If H1 > 0 everywhere on M ,
then we have ∫

M

1

H1
dA ⩾ (n+ 1)vol(Ω) (12)

where Ω is the compact domain with ∂Ω = M . Moreover, the equality
holds if and only if Mn is a round sphere.

Proof. Recall that xt = expx(p)(tN(p)) = x(p) + tN(p) here, we have

dV (x+ tN) = (1− tk1) · · · (1− tkn) dt dA. (13)
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Using (3) for f(x) ≡ 1,

vol(Ω) =
∫
M

∫ c(p)

0

(1− tk1) · · · (1− tkn) dt dA. (14)

Note that c(p) ⩽ 1
kmax

⩽ 1
H1(p)

since the normal geodesic is well-defined
before reaching the focal point. And as an algebraic inequality,

(1− tk1) · · · (1− tkn) ⩽ (1− tH1)
n (15)

Then from (14),

vol(Ω) ⩽
∫
M

∫ 1
H1

0

(1− tH1)
n dt dA =

1

n+ 1

∫
M

1

H1
dA. (16)

The equality holds if (15) holds, which means M is totally umbilical.

Theorem 8 ([MR91]). Let x : Mn → Rn+1 be an embedded compact
hypersurface. If Hr is constant for some 1 ⩽ r ⩽ n, then M is a round
sphere.

Proof. From Lemma 3, there is a convex point in M , thus Hr is a positive
constant. Let Ω be the compact domain with ∂Ω = M . Using Lemma
2, we have H

1
r
r ⩽ H1, Hr−1 ⩾ H

r−1
r

r . Together with Lemma 6, we get

0 =

∫
M

(Hr−1 +Hr⟨x,N⟩) dA

⩾
∫
M

(H
r−1
r

r +Hr⟨x,N⟩) dA

= H
r−1
r

r

∫
M

(1 +H
1
r
r ⟨x,N⟩) dA.

(17)

Recall that from divergence theorem,

(n+ 1)vol(Ω) +
∫
M

⟨x,N⟩ dA = 0. (18)

So
0 ⩾ area(M)− (n+ 1)H

1
r
r vol(Ω). (19)

Using Theorem 7,

(n+ 1)H
1
r
r vol(Ω) ⩽ area(M). (20)

Thus the equality in (20) holds, and hence M is totally umbilical by the
rigidity of Theorem 7.
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4. The hyperbolic case

Let Rn+2
1 be the real vector space Rn+2 endowed with the Lorentzian

metric
⟨x, y⟩ = −x0y0 + x1y1 + · · ·+ xn+1yn+1.

The hyperbolic space Rn+1(−1) can be regarded as Hn+1 = {x ∈
Rn+2

1 | |x|2 = −1, x0 ⩾ 1}, with the induced positive-definite metric.
Then an immersed compact orientable hypersurface x : M → Hn+1 can
be viewed as x : M → Rn+2

1 with |x|2 = −1, x0 ⩾ 1. Let N be the inner
unit normal vector field, a ∈ Rn+2

1 . By direct calculation,
∆⟨x, a⟩ = (D⟨ei, a⟩)i

=
∑
i

δij(⟨ei, a⟩+ ⟨eα, a⟩hα
ij) = n(⟨x, a⟩+H1⟨N, a⟩).

Using divergence theorem,∫
M

(⟨x, a⟩+H1⟨N, a⟩) dA = 0. (21)

Lemma 9 ([MR91]). Let x : Mn → Hn+1 be an immersed compact
orientable hypersurface, N the inner unit normal vector field, then for
1 ⩽ r ⩽ n and arbitrary a ∈ Rn+2

1 , we have∫
M

(Hr−1⟨x, a⟩+Hr⟨N, a⟩) dA = 0. (22)

Proof. For small number t, consider hypersurface
xt(p) = expx(p)(−tN(p)) = x(p) cosh t−N(p) sinh t. (23)

By solving Jacobi field equation, the unit normal vector field is given by
Nt = −x sinh t+N cosh t, and the principal directions are given by

xt,∗ei = (cosh t+ ki sinh t)ei, 1 ⩽ i ⩽ n (24)
where ei are the principal directions for x. Thus (cosh t+ki sinh t)ki(t) =
sinh t+ ki cosh t. For the area element,

dAt = (cosh t+ k1 sinh t) · · · (cosh t+ kn sinh t) dA
= coshn t · Pn(tanh t) dA.

(25)

For the mean curvature,

H1(t) =
1

n

∑ sinh t+ ki cosh t

cosh t+ ki sinh t
=

1

n

∑ tanh t+ ki
1 + ki tanh t

=
n cosh t sinh t · Pn(tanh t) + P ′

n(tanh t)

n cosh2 t · Pn(tanh t)
.

(26)
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So we have by (21), (25), (26),

0 =

∫
M

n(⟨xt, a⟩+H1(t)⟨Nt, a⟩) dAt

=

∫
M

n cosh2 t · Pn(tanh t)⟨x cosh t−N sinh t, a⟩ dA

+

∫
M

(n cosh t sinh t · Pn(tanh t) + P ′
n(tanh t))⟨−x sinh t+N cosh t, a⟩ dA

=

∫
M

(nPn(tanh t)⟨x, a⟩+ P ′
n(tanh t)⟨−x tanh t+N, a⟩) dA.

(27)
Regarding both sides as polynomials of tanh t, we can solve∫

M

(Hr−1⟨x, a⟩+Hr⟨N, a⟩) dA = 0 (28)

for 1 ⩽ r ⩽ n.
Definition 10. We define a positive function ρn : (1,∞) → (0,∞) with
parameter n ∈ N by

ρn(u) =

∫ coth−1 u

0

(cosh t− u sinh t)n cosh t dt. (29)

We have the following Heintze-Karcher type inequality.
Theorem 11 ([MR91]). Let x : Mn → Hn+1 be an embedded campact
hypersurface. If Hr > 1 everywhere on M , then we have∫

M

(⟨x, a⟩+H
1
r
r ⟨N, a⟩)ρn(H

1
r
r ) dA ⩾ 0 (30)

for a ∈ Rn+2
1 with |a|2 = −1. Moreover, the equality holds if and only if

M is a geodesic sphere.
Proof. Recall that xt = expx(p)(tN(p)) = x(p) cosh t+N(p) sinh t here,
dV (x cosh t+N sinh t) = (cosh t− k1 sinh t) · · · (cosh t− kn sinh t) dt dA.

(31)
Note ∆⟨x, a⟩ = (n+1)⟨x, a⟩, and ∇⟨x, a⟩ = a, from divergence theorem,

(n+ 1)

∫
Ω

⟨x, a⟩ dV +

∫
M

⟨N, a⟩ dA = 0. (32)

Using (3) for f(x) = (n+ 1)⟨x, a⟩,

−
∫
M

⟨N, a⟩ dA = (n+ 1)

∫
M

∫ c(p)

0

⟨xt, a⟩
∏
i

(cosh t− ki sinh t) dt dA.

(33)
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From Lemma 3, there is a point in M , where all the principal curvatures
are greater than 1. Using Lemma 2, we have 1 < H

1
r
r ⩽ H1. Note that

c(p) ⩽ coth−1 kmax ⩽ coth−1H1(p) ⩽ coth−1H
1
r
r (p). And as an algebraic

inequality,∏
i

(cosh t−ki sinh t) ⩽ (cosh t−H1 sinh t)n ⩽ (cosh t−H
1
r
r sinh t)n. (34)

Then from (33),

− 1

n+ 1

∫
M

⟨N, a⟩ dA

⩽
∫
M

∫ coth−1 H
1
r
r

0

(cosh t−H
1
r
r sinh t)n⟨xt, a⟩ dt dA.

(35)

On the other hand, by taking w = cosh t−H
1
r
r sinh t, we can show

(n+ 1)

∫ coth−1 H
1
r
r

0

(cosh t−H
1
r
r sinh t)n(sinh t−H

1
r
r cosh t) dt

=

∫ 0

1

dwn+1 = −1.

(36)

So multiplying by ⟨N, a⟩ and integrating over M , we have

− 1

n+ 1

∫
M

⟨N, a⟩ dA

=

∫
M

⟨N, a⟩
∫ coth−1 H

1
r
r

0

(cosh t−H
1
r
r sinh t)n(sinh t−H

1
r
r cosh t) dt dA.

(37)
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Putting together (35) and (37),

0 ⩽
∫
M

∫ coth−1 H
1
r
r

0

(cosh t−H
1
r
r sinh t)n⟨xt, a⟩ dt dA

−
∫
M

⟨N, a⟩
∫ coth−1 H

1
r
r

0

(cosh t−H
1
r
r sinh t)n(sinh t−H

1
r
r cosh t) dt dA

=

∫
M

∫ coth−1 H
1
r
r

0

(cosh t−H
1
r
r sinh t)n

· (⟨x cosh t+N sinh t, a⟩ − (sinh t−H
1
r
r cosh t)⟨N, a⟩) dt dA

=

∫
M

(⟨x, a⟩+H
1
r
r ⟨N, a⟩)

∫ coth−1 H
1
r
r

0

(cosh t−H
1
r
r sinh t)n dt dA

=

∫
M

(⟨x, a⟩+H
1
r
r ⟨N, a⟩)ρn(H

1
r
r ) dA.

(38)
The equality holds if (34) holds, which means M is totally umbilical.

Theorem 12 ([MR91]). Let x : Mn → Hn+1 be an embedded campact
hypersurface. If Hr is constant for some 1 ⩽ r ⩽ n, then M is a geodesic
hypersphere.

Proof. From Lemma 3, there is a point in M , where all the principal
curvatures are greater than 1, thus Hr is a constant greater than 1. Then
ρn(H

1
r
r ) is a positive constant. Using Lemma 2, Hr−1 ⩾ H

r−1
r

r . Together
with Lemma 9, we get

0 =

∫
M

(Hr−1⟨x, a⟩+Hr⟨N, a⟩) dA

⩾
∫
M

(H
r−1
r

r ⟨x, a⟩+Hr⟨N, a⟩) dA

= H
r−1
r

r

∫
M

(⟨x, a⟩+H
1
r
r ⟨N, a⟩) dA.

(39)

Using Theorem 11,

0 ⩽
∫
M

(⟨x, a⟩+H
1
r
r ⟨N, a⟩) dA. (40)

Thus the equality in (40) holds, and hence M is totally umbilical by the
rigidity of Theorem 11.
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5. The spherical case

Let x : Mn → Sn+1 be an immersed compact orientable hypersurface,
N the inner unit normal vector field, a ∈ Rn+2. By direct calculation,

∆⟨x, a⟩ = (D⟨ei, a⟩)i
=

∑
i

δij(⟨ei, a⟩+ ⟨eα, a⟩hα
ij) = n(⟨x, a⟩ −H1⟨N, a⟩).

Using divergence theorem,∫
M

(⟨x, a⟩ −H1⟨N, a⟩) dA = 0. (41)

Lemma 13 ([MR91, Biv83]). Let x : Mn → Sn+1 be an immersed com-
pact orientable hypersurface, N the inner unit normal vector field, then
for 1 ⩽ r ⩽ n and arbitrary a ∈ Rn+2, we have∫

M

(Hr−1⟨x, a⟩ −Hr⟨N, a⟩) dA = 0. (42)

Proof. For small number t, consider hypersurface

xt(p) = expx(p)(−tN(p)) = x(p) cos t−N(p) sin t. (43)

By solving Jacobi field equation, the unit normal vector field is given by
Nt = x sin t+N cos t, and the principal directions are given by

xt,∗ei = (cos t− ki sin t)ei, 1 ⩽ i ⩽ n (44)

where ei are the principal directions of x. Thus (cos t − ki sin t)ki(t) =
sin t− ki cos t. For the area element,

dAt = (cos t− k1 sin t) · · · (cos t− kn sin t) dA
= cosn tPn(− tan t) dA.

(45)

For the mean curvature,

H1(t) =
1

n

∑ sin t− ki cos t
cos t− ki sin t

=
1

n

∑ tan t− ki
1− ki tan t

= −n cos t sin t · Pn(− tan t) + P ′
n(− tan t)

n cos2 t · Pn(− tan t)
.

(46)

9
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So we have by (41), (45), (46),

0 =

∫
M

n(⟨xt, a⟩+H1⟨Nt, a⟩) dAt

=

∫
M

n cos2 t · Pn(− tan t)⟨x cos t−N sin t, a⟩ dA

+

∫
M

(−n cos t sin t · Pn(− tan t)− P ′
n(− tan t))⟨x sin t+N cos t⟩ dA

=

∫
M

(nPn(− tan t)⟨x, a⟩ − P ′
n(− tan t)⟨x tan t+N, a⟩) dA.

(47)
Regarding both sides as polynomials of − tan t, we can solve∫

M

(Hr−1⟨x, a⟩ −Hr⟨N, a⟩) dA = 0 (48)

for 1 ⩽ r ⩽ n.
Definition 14. We define a positive functin τn : (0,∞) → (0,∞) with
parameter n ∈ N by

τn(u) =

∫ cot−1 u

0

(cos t− u sin t)n cos t dt. (49)

We have the following Heintze-Karcher type inequality.
Theorem 15 ([MR91]). Let x : Mn → Sn+1

+ be an embedded campact
hypersurface lying in the upper semi-sphere. If Hr > 0 everywhere on
M , then we have ∫

M

(⟨x, a⟩ −H
1
r
r ⟨N, a⟩)τn(H

1
r
r ) dA ⩾ 0 (50)

where a is the north pole of Sn+1. Moreover, the equality holds if and
only if M is umbilical.
Proof. Recall that xt = expx(p)(tN(p)) = x(p) cos t+N(p) sin t here,

dV (x cos t+N sin t) = (cos t− k1 sin t) · · · (cos t− kn sin t) dt dA. (51)
Note ∆⟨x, a⟩ = −(n+1)⟨x, a⟩, and ∇⟨x, a⟩ = a, from divergence theorem,

(n+ 1)

∫
Ω

⟨x, a⟩ dV =

∫
M

⟨N, a⟩ dA. (52)

Using (3) for f(x) = (n+ 1)⟨x, a⟩,∫
M

⟨N, a⟩ dA = (n+ 1)

∫
M

∫ c(p)

0

⟨xt, a⟩
∏
i

(cos t− ki sin t) dt dA. (53)

10
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From Lemma 3, there is a convex point in M . Using Lemma 2, we have
0 < H

1
r
r ⩽ H1. Note that c(p) ⩽ cot−1 kmax ⩽ cot−1H1(p) ⩽ cot−1H

1
r
r (p).

And as an algebraic inequality∏
i

(cos t− ki sin t) ⩽ (cos t−H1 sin t)n ⩽ (cos t−H
1
r
r sin t)n. (54)

Then from (53),

1

n+ 1

∫
M

⟨N, a⟩ dA ⩽
∫
M

∫ cot−1 H
1
r
r

0

(cos t−H
1
r
r sin t)n⟨xt, a⟩ dt dA. (55)

On the other hand, by taking w = cos t−H
1
r
r sin t, we can show

(n+ 1)

∫ cot−1 H
1
r
r

0

(cos t−H
1
r
r sin t)n(− sin t−H

1
r
r cos t) dt

=

∫ 0

1

dwn+1 = −1.

(56)

So multiplying by ⟨N, a⟩ and integrating over M , we have

− 1

n+ 1

∫
M

⟨N, a⟩ dA

=

∫
M

⟨N, a⟩
∫ cot−1 H

1
r
r

0

(cos t−H
1
r
r sin t)n(− sin t−H

1
r
r cos t) dt dA

(57)

Putting together (55) and (57),

0 ⩽
∫
M

∫ cot−1 H
1
r
r

0

(cos t−H
1
r
r sin t)n⟨xt, a⟩ dt dA

+

∫
M

⟨N, a⟩
∫ cot−1 H

1
r
r

0

(cos t−H
1
r
r sin t)n(− sin t−H

1
r
r cos t)dt dA

=

∫
M

∫ cot−1 H
1
r
r

0

(cos t−H
1
r
r sin t)n

· (⟨x cos t+N sin t, a⟩+ (− sin t−H
1
r
r cos t)⟨N, a⟩) dt dA

=

∫
M

(⟨x, a⟩ −H
1
r
r ⟨N, a⟩)τn(H

1
r
r ) dA.

(58)

The equality holds if (54) holds, which means M is totally umbilical.
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Theorem 16 ([MR91]). Let x : Mn → Sn+1
+ be an embedded campact

hypersurface. If Hr is constant for some 1 ⩽ r ⩽ n, then M is a geodesic
hypersphere.

Proof. From Lemma 3, there is a convex point in M , thus Hr is a positive
constant. Then τn(H

1
r
r ) is a positive constant. Using Lemma 2, Hr−1 ⩾

H
r−1
r

r . Together with Lemma 13, we get

0 =

∫
M

(Hr−1⟨x, a⟩ −Hr⟨N, a⟩) dA

⩾
∫
M

(H
r−1
r

r ⟨x, a⟩ −Hr⟨N, a⟩) dA

= H
r−1
r

r

∫
M

(⟨x, a⟩ −H
1
r
r ⟨N, a⟩) dA.

(59)

Using Theorem 15,

0 ⩽
∫
M

(⟨x, a⟩ −H
1
r
r ⟨N, a⟩) dA. (60)

Thus the equality (60) holds, and hence M is totally umbilical by the
rigidity of Theorem 15.
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