
Algebraic Geometry(rv)

(24fall)quiddite

This is a very very brief note based on a course lectured by Prof.
Zhang, which covers roughly the first 2 chapters of [1], with more examples.
Good refenences are [1, 2, 3, 4, 5, 6, 7](the first three books are used
frequently) & [8]. I type it in order to review & tide up my mind, so don’t
blame me for the abundant typos & mis-usages of symbols, terms blabla.
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1 Varieties

2 Schemes

2.1 Schemes

Definition 2.1 (spectrum of a ring). Let A be a ring, the spectrum is
a ringed space (SpecA,OSpecA) given by

(1) SpecA with the Zariski topology;

(2) OSpecA(U) = {s : u→
⨿

p∈U Ap}|s(p) ∈ Ap}.

Luckily, the tidious construction above is used not that often. We
always simply use the properties suggested by the following proposition.

Proposition 2.2 (`). Let A be a ring,

(1) for and p ∈ SpecA, Op
∼= Ap;

(2) for any f ∈ A,OSpecA(D(f)) ∼= Af ;

(3) as a result of (2), OSpecA(SpecA) ∼= A.

Definition 2.3 (ringed spaces and morphisms).

(1) A ringed space is a pair (X,OX);

(2) A locally ringed space is a r.s. whose stalks OX,P are local rings
∀P ∈ X;

(3) A morphism between r.s.’s (X,OX) & (Y,OY ) is a pair (f, f#),
where f : X

conti−−−→ Y & f# : OY → f∗OX ;

(4) A morphism between l.r.s.’s is a morphism X
f−→ Y between r.s.’s,

which induces local homomorphisms f#
p : OY,f(p) → OX,p, i.e.

(f#
p )−1 preserves the maximal ideal.

Proposition 2.4.
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(1) (SpecA,OSpecA) is a l.r.’s.;

(2) The set of morphisms (f, f#) between l.r.s.’s (SpecB,OSpecB)

& (SpecA,OSpecA) consists exactly of the morphisms induced by
some ϕ : A

homo−−−→ B.

Now we can define schemes.

Definition 2.5 (schemes).

(1) An affine scheme is a l.r.s. (X,OX) which is isomorphic to some
(SpecA,OSpecA);

(2) A scheme is a l.r.s. (X,OX) which is locally affine, i.e. ∃ an
open cover {U} s.t. each (U,OX |U ) is an affine scheme;

(3) A morphism of schemes is a morphisms of l.r.s.’s.

Example 2.6 (schemes). In these examples, k = alg.cl k.

(1) If R is a d.v.r., then SpecR = {◦, •}, where ◦ is a generic point
and • is a closed point(see [1]P.74 for detailed explanation);

(2) A1
k = Spec k[x] = {◦}∪ k, where {◦} is a generic point and points

in k are all closed;

(3) A2
k = Spec k[x, y] = {(0)} ∪ {f ∈ k[x, y] | f is irreducible} = {◦} ∪

k2∪{f ∈ k[x, y] | f is irreducible, deg f ⩾ 2}. The first part is the
generic point, the second part consists of closed points, and the
third part consists of generic points of such curves f(x, y) = 0.

(4) (`affine line with a doubled point) Let X1 = X2 = A1
k, U1 = U2 =

A1
k\{0}. Glueing X1 & X2 along U1 & U2 via the identity map

U1 → U2, nothing is done except for {0}.
··

this gives a non-affine scheme.
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Proposition 2.7 (generic points). Let X be a scheme, then every non-
empty irreducible closed subset Y of X has a unique generic point,
i.e. a point p ∈ Y s.t. {p} = Y

Let U = SpecA be an affine open subset of X s.t. U∩Y ̸= ∅, then U∩Y
is an irreducible closed subset of U(i.e. “reduced” to affine case), thus
U∩Y = V (p) for some p ∈ SpecA. Obviously, U∩Y = {p}U = {p}∩U .
At the same time, U ∩ Y ̸= ∅ is open in Y , from the irreducibility,
U ∩ Y Y = Y , so Y ⊂ {p}, i.e. {p} = Y . For the uniqueness, if
y = {p} = {p′}, then V (p) = U ∩ Y = V (′), thus p = p′.

Now we are going to a criterion for affine-ness(see [1]P.81 or [3]P.28).

Procedure 2.8 (Construction of Xf ). Let X be a scheme, f ∈ OX(X)

1. Xf = {p ∈ X | fp /∈ mp = mOp
(equivalently, fp is invertible in Op)};

2. properties of Xf :

(a) Xf is open in X;
(b) Xf ∩Xg = Xfg;
(c) if X has a finite cover {Ui}, s.t. each Ui ∩ Uj is q.c.,

then OX(Xf ) = (OX(X))f .

Proposition 2.9 (`criterion for affine-ness). Let X be a scheme, then
X is affine ⇐⇒ ∃ finitely many {fi} s.t.

(1) Xfi are affine;

(2) {fi} generates OX(X).

Definition 2.10 (residue field). Let X be a scheme, (Ox,mx) be the
local ring at x ∈ X. k(x) = Ox/mx is called the residue field of x.

Remark 2.11. In order to define a morphism f : SpecK → X,
where K is a field, it suffices to identify a point x ∈ X & an inclusion
k(x) ↪→ K. e.g. k(x) id−→ k(x) ↭ Spec k(x) ↪→ X.
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2.2 Properties of schemes & morphisms I

Let’s begin with an annoying table of definitions.

Definition 2.12 (some special schemes). A scheme X is called

(1) quasi-compact, if sp(X) is q.c.;

(2) connected, if sp(X) is connected;

(3) irreducible, if sp(X) is irreducible;

(4) reduced, if ∀U
open
⊂ X, OX(U) is reduced, i.e. nil(OX(U)) = {0};

(5) integral, if ∀U
open
⊂ X, OX(U) is a domain;

(6) locally noetherian, if ∀U = SpecA
open
⊂ X, A is noetherian;

(7) noetherian, if X is l.n. & q.c.;

Remark 2.13. The condition is (6) can be replaced with “∃ a cover
{Ui} of X, where Ui = SpecAi

open
⊂ X, each Ai is noetherian”.

The equivalence between “∀U” & “∃ a cover {Ui}” also holds for
(1)(2)(3)(5).

Here’s some connections between these definitions.

Proposition 2.14. Let X be a scheme,

(1) X is integral ⇐⇒ X is reduced & irreducible；

(2) if X = SpecA is affine, then X is noetherian ⇐⇒ A is noethe-
rian;

Let’s continue with an annoying table of definitions.

Definition 2.15 (some special morphisms). Let f : X → Y be a mor-
phism between schemes, f is (called)

(1) locally of finite type, if ∀V = SpecB
open
⊂ Y, ∃ a cover {Uj} of

f−1(V ), where Uj = SpecAj
open
⊂ X, each Aj is a f.g. B-algebra;
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(2) of finite type, if ∀V = SpecB
open
⊂ Y, ∃ a finite cover {Uj} of

f−1(V ), where Uj = SpecAj
open
⊂ X, each Aj is a f.g. B-algebra;;

(3) finite, if ∀V = SpecB
open
⊂ Y, f−1(V ) = SpecA

open
⊂ X, where A is

a f.g. B-module;

(4) quasi-finite, if ∀y ∈ Y, f−1(y) is a finite set;

(5) quasi-compact, if ∀V = SpecB
open
⊂ Y, f−1(V ) is q.c..

Here’s a famous & useful trick.

Proposition 2.16 (Nike’s trick). Let X be a scheme, SpecA, SpecB
open
⊂ X, then SpecA ∩ SpecB is covered by (principle) open {SpecC},

which is open both in SpecA& SpecB.
∀p ∈ SpecA ∩ SpecB, take f ∈ A, g ∈ B s.t. p ∈ DSpecB(g) ⊂
DSpecA(f) ⊂ SpecA ∩ SpecB.
Let g′ = g|DSpecA(f) ∈ OSpecA(DSpecA(f)) = Af (since DSpecA(f) ⊂
SpecB, this can be done). Then we write g′ = h

fn , where h ∈ A, n ∈ N.

DSpecB(g)=DSpecAf
(g′) = Spec(Af )g′ = SpecAfh,

where “=” holds on the “set” level. Thus DSpecB(g) is open in SpecB.

Remark 2.17. As for intersections of the form U∩SpecA, where U is
an arbitrary open set, the result is easier(since openness is “weaker”):
U ∩ SpecA is covered by open {DSpecA(f)}.

Proposition 2.18 (closed points). Let X be a scheme which is of finite
type over a field k, then the set of closed points is dense in X.
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Accoding to the condition, we have a finite cover {Ui} of X(Spec k is a
singleton), where Ui = SpecAi

open
⊂ X , each Ai is a f.g. k-algebra.

Only need to prove that, ∀U = SpecB
open
⊂ X , it contains a closed

point of X . Let p be a closed point in U , and consider Ui ∋ p. Using
2.16, take a principle open set p ∈ D(f) ̸= ∅ in Ui ∩ U . The inclusion
i : D(f) → Ui induces i# : Ai → (Ai)f between Jacobson rings, so
p = i(p) is closed in Ui. Thus p is closed in X . The existence of such
p ∈ U follows the existence of maximal ideals(reduce to affine case).

Remark 2.19. 2.18 fails generally, e.g. (1)X = {◦, •}.

problem 3.3 & 3.13

Definition 2.20 (open & closed immersions). Let f : X → Y be a
morphism of schemes, f is called a

(1) open immersion, if (X,OX)
f∼= (Z,OZ), for some open subscheme

(Z,OZ) of Y ;

(2) closed immersion, if sp(X)
f∼= sp(Z) & f# : OY → f∗OX is

surjective;

(3) immersion, if f can be factorized as h ◦ g : X → U → Y , where
g : X → U is a closed imm. & h : U → Y is an open imm..

(4) 2 closed imm.’s f1 : X1 → Y, f2 : X2 → Y are equivalent if ∃ an
isom. g : X1 → X2 s.t. the following diagram commutes.

X1 Y

X2

f1

∼
f2

The following proposition characterizes closed immersions in affine
case.
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Proposition 2.21. Let A be a ring, X be a scheme. X → SpecA is
a closed imm. ⇐⇒ (X,OX) ∼= (SpecA/a,OSpecA) for some ideal a
of A.

Definition 2.22 (fiber product & fiber).

(1) Let X,Y be schemes over S, the fiber product X ×S Y is defined
by the following diagram of morphisms:

Z

X ×S Y X

Y S

pr1

pr2

(2) the fiber of f : X → Y at y is defined by Xy = X ×Y Spec k(y)

X ×Y Spec k(y) X

Spec k(y) Y

pr1

pr2

where “↪→” exists in the sense of 2.11.

2.3 Properties of schemes & morphisms II

2.4 Quasi-coherent sheaves

2.5 Projective sheaves
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A Category theory

A.1 colimit & limit

Definition A.1 (direct system). Let I be a directed set, a direct system
{Xi, fij} over I consists of a family of objects {Xi}i∈I & morphisms
fij : Xi → Xj s.t.

(1) fii = idXi
, ∀i;

(2) fik = fjk ◦ fij, ∀i ⩽ j ⩽ k.

“colimit” has many names, including “direct limit”, “inductive limit”.

Definition A.2 (colimit). Let {Xi, fij} be a direct system, then colimit
lim−→Xi is defined by the following diagram.

Xi Xj

lim−→Xi

Y

fij

Definition A.3 (inverse system). Let I be a directed set, a inverse
system {Xi, gij} over I consists of a family of objects {Xi}i∈I &
morphisms gij : Xj → Xi s.t.

(1) gii = idXi
, ∀i;

(2) gik = gij ◦ gjk, ∀i ⩽ j ⩽ k.

“limit” has many names, including “inverse limit”, “projective limit”.

Definition A.4 (limit). Let {Xi, gij} be an inverse system, then limit
lim←−Xi is defined by the following diagram.
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Y

lim←−Xi

Xj Xigij

Example A.5 (colimit & limit).

(1) Let I be equiped with the discrete order(i ⩽ j ⇐⇒ i = j), {Xi}
be a family of objects, then

(a) lim−→Xi =
⨿
Xi, it’s called the sum or coproduct;

(b) lim←−Xi =
∏
Xi, it’s called the product.

(2) Let I = ∅,

(a) the colimit coincides with the initial object;

(b) the limit coincides with the terminal object.

(3) In the category of R-algebras, A
⨿
B = A⊗R B;

(4) Let I = {a, b, c}, where a ⩽ b, c, {Xi} be a family of objects, then

lim←−Xi = Xb ×Xa
Xc

Proposition A.6 (with adjoint functors). Let C,D be 2 categories,
F,G be a pair of adjoint functors, i.e.

C F−−⇀↽−−
G
D;(1) HomC(G(−), ?) ∼= HomD(−, F (?)).(2)

Let I be a directed set,

(1) {Yi} ⊂ D be a direct system, then G(lim−→Yi) = lim−→G(Yi);

(2) {Xi} ⊂ C be an inverse system, then F (lim←−Xi) = lim←−F (Xi).
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B Commutative algebra

B.1 Valuation rings

Definition B.1 (valuation rings). Let k be a field, A be a subring(thus
a domain) of k. We say A is a valuation ring of k if ∀x ̸= 0 ∈ k,
either x ∈ A or 1

x ∈ k.

Proposition B.2 (properties of v.r.s). Let A be a v.r. of k.

(1) A is a local ring, and mA = {x ∈ A | x is not invertible} = {x ̸=
0 ∈ A | 1x /∈ A} ∪ {0};

(2) A is integrally closed in k;

(3) if B is a ring s.t. A ⊂ B ⊂ k, the B is also a v.r. of k. Moreover,

(a) mB ⊂ A;

(b) mB is a prime ideal of A;

(c) B = AmB , i.e. B is a local ring of A

(4) ∀2 ideals a, b of A, either a ⊂ b or a ⊃ b. Moreover, if any
subring B of k with this compariable properties, must be a v.r..

Now we are going to construct v.r.’s of a field k.

Procedure B.3. Fix a field k and an algebraically closed filed Ω.

1. Σ = {(A, f) |A ⊂ k, f : A
homo−−−→ Ω};

2. define a partial order on Σ:

(A, f) ⩽ (B, g) ⇐⇒ A ⊂ B&g|A = f,

then Σ has at least one maximal element(Zorn’s lemma);

3. let (B, g) be a maximal element of Σ, then

(a) (B, g) is a local ring & mB = ker g;
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(b) (B, g) is a v.r. of k.

Corollary B.4. Let A be a subring of k, then int.clA = ∩B, where
the intersection is taken over {B |A ⊂ B ⊂ k&B is a v.r. of k}.

• Obviously int.clA ⊂ ∩B;

• Conversely, if x ∈ int.clA but x /∈ A, let B = A[1x], then 1
x is not

invertible in B. Let m be a maximal ideal of B s.t. 1
x ∈ m, and let

Ω = alg.clB/m. The quotient gives a map f : B → Ω. From B.3,
(B, f) can be extended to some valuation ring (C, g). But f(1x) = 0,
thus 1

x ∈ kerC, i.e x /∈ C.

There’s another construction which happens to be equivalent to B.3.

Procedure B.5. Fix a field k.

1. Σ = {(A,m) |A ⊂ k is a local ring with maximal ideal m};

2. define a partial order(called dominance) on Σ:

(A,m) ⩽ (B, n) ⇐⇒ A ⊂ B&m ⊂ n,

then Σ has at least one maximal element;

3. (A,m) is a maximal element of Σ ⇐⇒ A is a v.r. of k.

Proposition B.6. Let A ⊂ B be 2 domains, B f.g. over A. ∀x ̸=
0 ∈ B, ∃u ̸= 0 ∈ A s.t. any f : A → Ω = alg.clΩ, f(u) ̸= 0 can be
extended to g : B → Ω with g(v) ̸= 0.

Using B.6, we can prove one form of Hilbert’s Nullstellensatz.

Corollary B.7. Let k be a field and B a f.g. k-algebra. If B is a
field, the B/k is a finite algebraic extension.
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Take A = k, v = 1,Ω = alg.cl k, then we get some g : B → Ω, which is
non-trivial thus injective.
Explanation: Consider only the case when B = k[x]. Take some ξ ̸=
0 ∈ Ω = alg.cl k, we get a homomorphism by sending x to ξ.

Finally, we explore the relartion between v.r.’s & valuations of a field.

Definition B.8 (valuations). Let k be a field, G be a totally ordered
abelian group. A valuation of k with values in G is a mapping v :

k∗ → G s.t.

(1) v(xy) = v(x)v(y);

(2) v(x+ y) ⩾ min{v(x), v(y)}, if x+ y ̸= 0.

Procedure B.9.

1. From a v.r A of k to a valuation

(a) U = {units of A}, G = k∗/U ;

(b) define a partial order on G:

[x] ⩽ [y] ⇐⇒ y

x
∈ A,

then G becomes a totally ordered group, moreover, the
quotient v : k → G is a valuation with values in G.

2. From a valuation v : k∗ → G of k to a v.r.

(a) A = {x ∈ k∗ | v(x) ⩾ 0} ∪ {0};

(b) A is a v.r. of k, which is called the v.r. of v.

B.2 Jacobson rings

Definition B.10 (Jacobson rings). We say a ring A is a Jacobson
ring if ∀p ∈ SpecA, p = ∩m, where the intersection is taken over
{m ∈ Spm | p ⊂ m}.
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Remark B.11. In non-commatative cases, Jacobson rings are defined
via primitive ideals.

Example B.12 (Jacobson rings). The following rings are Jacobson.

(1) A field k;

(2) A polynomial ring k[x1, · · · , xn];

(3) A p.i.d. A with Jac(A) = 0;

(4) A ring of Krull dimension 0, e.g. a ring with only one prime ideal.

Here’s an interesting example.

Example B.13 (`Jacobson yet not noetherian). Let k be a field, R =

k[x1, x2, · · · ]/(x21, x22, · · · ). The only prime ideal of R is (x1, x2, · · · ),
which is not f.g..

Proposition B.14 (properties of Jacobson rings).

(1) A ring A is Jacobson ⇐⇒ A[x] is Jacobson([9]P.18);

(2) As a result of (1), a f.g. algebra over a Jacobson ring is also
Jacobson;

(3) Let A,B be Jacobson, f : A→ B, then f−1(m) is a maximal ideal
of A, ∀ maximal ideal m of B;

(4) As a result of (3), f# : SpecB → SpecA maps closed points in
SpecB to closed points in SpecA.

B.3 Nakayama’s lemma

Theorem B.15 (Nakayama’s lemma). Let M be a f.g. A-module, a be
an ideal. If aM =M , then ∃x ∈ A s.t.

(1) x ≡ 1 mod a;

(2) xM = 0.
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Corollary B.16. Let M be a f.g A-module,([4]P.556)

(1) if u :M
homo−−−→M is surjective, then u is bijective;

(2) if A is local with m, then a subset {m1, · · · ,mr} generates M ⇐⇒
{m1, · · · ,mr} generates M/mM over A/m.

(1) Consider M as A[x]-module, where x ·m = u(m)([10]P.9);

(2) “⇒” is obvious. As for “⇐”, let N = (x1, · · · , xr), then N ↪→
M ↠M/mM is exact, i.e. M = N +mM .

Remark B.17. Essentially, B.15 generalizes the existence of annihi-
lating polynomial in linear algebra. Thus the idea in (1) is natural.

C Sheaves

We consider only sheaves of Abelian groups, thus rings & modules
are treated as special cases.

Definition C.1 (presheaves & sections & morphisms). Let X be a topo.
space,

(1) a presheaf F on X is a contra. functor from Open(X)→ Ab;

(2) a morphism between 2 presheaves F ,G is a natural transformation
from F → G.

Or we can adopt human’s language,

(1) a presheaf F on X consists of

(a) F(U) ∈ Ab, ∀U ∈ Open(X);

(b) restriction ρUV : F(U)→ F(V ), ∀V ⊂ U ∈ Open(X);

s.t.

(a) F(∅) = 0;

16



(b) ρUU = id;

(c) ρUW = ρVW ◦ ρUV .

(2) any element s ∈ F(U) is called a section of F on U , we sometimes
write Γ(U,F) for F(U);

(3) a morphism f : F → G consists of morphisms f(U) : F(U) →
G(U), ∀U ∈ Open(X), s.t. the following diagram commutes ∀V ⊂
U ∈ Open(X)

F(U) G(U)

F(V ) G(V )

f(U)

ρUV ρUV

f(V )

Definition C.2 (sheaves). Let X be a topo. space. A sheaf F on X

is a presheaf, s.t. if U ∈ Open(X), {Vi} ⊂ Open(X) is a cover of U ,

(1) (factorizing)if s ∈ F(U) s.t. s|Vi = 0, ∀i, then s = 0;

(2) (glueing)if si ∈ F(Vi) s.t. si|Vi∩Vj = sj|Vi∩Vj , ∀i, j, then ∃s ∈
F(U) s.t. s|Vi = si, ∀i.

Definition C.3 (stalks & germs). Let X be a topo. space p ∈ X, F
be a presheaf on X.

(1) We define the stalk Fp at p by

Fp = lim−→F(U),

where the colimit is taken over {U
open
⊂ X | p ∈ U};

(2) Any element sp ∈ Fp is called a germ of F at p.

Remark C.4. To be more concrete, Fp = {(U, s) | p ∈ U
open
⊂ X, s ∈

F(U)}/ ∼, where (U, s) ∼ (V, t) ⇐⇒ ∃W
open
⊂ X s.t.

(1) p ∈ W ⊂ U ∩ V ;
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(2) s|W = t|W .

Thus any germ sp comes from some sections.

Proposition C.5 (sheaves are determined by stalks). Let X be a topo.
space, F ,G be 2 sheaves on X, ϕ : F → G be a morphism. Then

(1) ϕ is injective ⇐⇒ ϕp : Fp → Gp is injective ∀p ∈ X;

(2) ϕ is surjective ⇐⇒ ϕp : Fp → Gp is surjective ∀p ∈ X;

(3) Thus ϕ is an isom. ⇐⇒ ϕp : Fp → Gp is an isom. ∀p ∈ X;

Remark C.6. This result applies only to sheaves.

Procedure C.7 (sheafification). Let X be a topo. space, F be a
presheaf on X.

1. ∀U
open
⊂ X, define F‡(U) = {s : U → ∪p∈UFp | s satisfies 1a&1b}:

(a) ∀p ∈ U, s(p) ∈ Fp
(b) ∀p ∈ U, ∃p ∈ V ⊂ U, t ∈ F(V ) s.t. ∀q ∈ V, tq = s(q).

2. properties of F‡:

(a) F‡ is a sheaf;

(b) ∃ a natural morphism θ : F → F‡, which satisfies the
following universal property.

F F‡

G(sheaf)

θ

∃!

Moreover, the pair (F‡, θ) is unqiue in this sense.

(c) Fp = F‡p , ∀p ∈ X.

Definition C.8 (kernel, image & cokernel). Let X be a topo. space,
F ,G be 2 sheaves on X, ϕ : F → G be a morphism.
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(1) kerϕ(U) := ker(ϕ(U));

(2) p.imϕ(U) := im(ϕ(U));

(3) p.cokerϕ(U) := p.coker(ϕ(U))

In general, p.imϕ, p.cokerϕ fail to be sheaves, so we define

(1) imϕ = (p.imϕ)‡;

(2) cokerϕ = (p.cokerϕ)‡.

Definition C.9 (injective & surjective morphisms, exact sequences). Let
X be a topo. space,

(1) a sequence · · · → F i−1 ϕi−1

−−−→ F i ϕi

−→ F i+1 → · · · of sheaves on X

is called exact if imϕi−1 = kerϕi, ∀i;

(2) ϕ : F → G is called injective if 0→ F ϕ−→ G is exact;

(3) ϕ : F → G is called surjective if F ϕ−→ G → 0 is exact.

Proposition C.10 (exactness on the stalk level). Let X be a topo.
space, a sequence · · · → F i−1 ϕi−1

−−−→ F i ϕi

−→ F i+1 → · · · of sheaves

on X is exact ⇐⇒ · · · → F i−1p

ϕi−1
p−−−→ F ip

ϕi
p−→ F i+1

p → · · · is exact
∀p ∈ X.

Proposition C.11 (left-exactness of restriction). Let X be a topo.
space, U

open
⊂ X. Then the functor Γ(U, ?) is left exact, i.e. if

0 → F ′ ϕ−→ F ψ−→ F ′′ is an exact sequence of sheaves on X, then
0→ F ′(U) ϕ(U)−−−→ F(U) ψ(U)−−−→ F ′′(U) is an exact sequence in Ab.

Remark C.12. The problem occurs since (imϕ)(U) ̸= im(ϕ(U)) =

(p.imϕ)(U) in general. Roughly speaking, the left-exactness comes
from (3) of the following proposition, since ker(ψ(U)) = (kerψ)(U) =
(imϕ)(U) ∼= F ′(U) ∼= (p.imϕ)(U) = im(ϕ(U)).
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Proposition C.13 (on injectivity). Let X be a topo. space, F ,G be 2
presheaves on X, ϕ : F → G be a morphism.

(1) If ϕ(U) : F(U)→ G(U) is injective ∀U
open
⊂ (X), then the induced

morphism ϕ‡ : F‡ → G‡ is injective;

F F‡

G

G‡

θ1
ϕ

ϕ‡

θ2

(2) As a result of (1), if ϕ is a morphism of sheaves, then imϕ is
naturally a subsheaf of G. Moreover, imϕ ∼= F/ kerϕ.

F(U) p.imϕ(U) G(U)

F

p.imϕ imϕ

G

(3) As a result of (2), if 0→ F ϕ−→ G is exact, then F ∼= imϕ.

Definition C.14 (direct image & inverse image). Let f : X → Y be a
conti. map of topo. spaces, F ,G are sheaves on X,Y resp.,

(1) (f∗F)(V ) := F(f−1(V )), this gives the direct image f∗F on Y ;

(2) (f−1G)(U) := lim−→G(V ), where the colimit is taken over {V
open
⊂

Y | f(U) ⊂ V }, this gives the inverse image f−1G on X.

Remark C.15.

20



(1) Calculating f∗F is always a crucial problem in algebraic geometry;

(2) f−1G is difficult to define, but easy to use.

Proposition C.16 (f−1(−)& f∗(?) are adjoint). Let f : X → Y be a
conti. map of topo. spaces, F ,G are sheaves on X,Y resp.,

HomX(f
−1G,F) = HomY (G, f∗F).

More precisely, we have 2 natural maps f−1f∗F → F & G → f∗f−1G.

Let’s examine some examples.

Example C.17 (sheaves). Let X be a topo. space, A be an ab. grp..

(1) (constant sheaf) Equip A with the disc. topo.. Define A(U) =

{f : U
conti−−−→ A}, ∀U

open
⊂ X, then A(U) ∼= A if U is connected.

(2) (skyscraper sheaf) For p ∈ X, define ip(A)(U) =
{
A, if p ∈ U
0, otherwise

.

Note that (ip(A))q =

{
A, if q ∈ {p}
0, otherwise

. Also, let A be the const.

sheaf on {p}, j : {p} → X, then ip(A) = j∗A.

Definition C.18 (flasque sheaves). Let X be a topo. space, F be a
sheaf on X. F is called flasque if ρUV : F(U) → F(V ) is surjective
∀V ⊂ U ∈ Open(X).

Proposition C.19 (properties of flasque sheaves).

(1) Let X be a topo. space, 0 → F ′ ϕ−→ F ψ−→ F ′′ → 0 be an exact
sequence of sheaves on X

(a) if F ′ is flasque, then Γ(U, ?) is exact, i.e. 0 → F ′(U) →
F(U)→ F ′′(U)→ 0 is an exact sequence in Ab;

(b) if F ′&F are flasque, then F ′′ is flasque.

(2) Let f : X → Y be a conti. map of topo. spaces, F be a flasque
sheaf on X, then f∗F is a flasque sheaf on Y .
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(3) Let X be a topo. space, F be a sheaf on X. Define F†(U) = {s :
U → ∪p∈UFp | ∀p ∈ U, s(p) ∈ Fp}. Then

(a) F† is a flasque sheaf;

(b) ∃ a natural injective morphism F → F†.

F F†

G(fls. sh.)
∃!

0-extension of sheaves.
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