

Algebraic Geometry(rv)

(24fall)quiddite

This is a very very brief note based on a course lectured by Prof. Zhang, which covers roughly the first 2 chapters of [1], with more examples. Good references are [1, 2, 3, 4, 5, 6, 7](the first three books are used frequently) & [8]. I type it in order to review & tide up my mind, so don't blame me for the abundant typos & mis-usages of symbols, terms blabla.

目录

1 Varieties	3
2 Schemes	3
2.1 Schemes	3
2.2 Properties of schemes & morphisms I	6
2.3 Properties of schemes & morphisms II	9
2.4 Quasi-coherent sheaves	9
2.5 Projective sheaves	9
A Category theory	10
A.1 colimit & limit	10
B Commutative algebra	12
B.1 Valuation rings	12
B.2 Jacobson rings	14
B.3 Nakayama's lemma	15

1 Varieties

2 Schemes

2.1 Schemes

Definition 2.1 (spectrum of a ring). *Let A be a ring, the spectrum is a ringed space $(\text{Spec } A, \mathcal{O}_{\text{Spec } A})$ given by*

- (1) $\text{Spec } A$ with the Zariski topology;
- (2) $\mathcal{O}_{\text{Spec } A}(U) = \{s : u \rightarrow \coprod_{p \in U} A_p\} | s(p) \in A_p\}.$

Luckily, the tedious construction above is used not that often. We always simply use the properties suggested by the following proposition.

Proposition 2.2 (*). *Let A be a ring,*

- (1) *for any $p \in \text{Spec } A$, $\mathcal{O}_p \cong A_p$;*
- (2) *for any $f \in A$, $\mathcal{O}_{\text{Spec } A}(D(f)) \cong A_f$;*
- (3) *as a result of (2), $\mathcal{O}_{\text{Spec } A}(\text{Spec } A) \cong A$.*

Definition 2.3 (ringed spaces and morphisms).

- (1) *A ringed space is a pair (X, \mathcal{O}_X) ;*
- (2) *A locally ringed space is a r.s. whose stalks $\mathcal{O}_{X,P}$ are local rings $\forall P \in X$;*
- (3) *A morphism between r.s.'s $(X, \mathcal{O}_X) \rightarrow (Y, \mathcal{O}_Y)$ is a pair $(f, f^\#)$, where $f : X \xrightarrow{\text{conti}} Y$ and $f^\# : \mathcal{O}_Y \rightarrow f_* \mathcal{O}_X$;*
- (4) *A morphism between l.r.s.'s is a morphism $X \xrightarrow{f} Y$ between r.s.'s, which induces **local** homomorphisms $f_p^\# : \mathcal{O}_{Y,f(p)} \rightarrow \mathcal{O}_{X,p}$, i.e. $(f_p^\#)^{-1}$ preserves the maximal ideal.*

Proposition 2.4.

- (1) $(\text{Spec } A, \mathcal{O}_{\text{Spec } A})$ is a l.r.'s.;
- (2) The set of morphisms $(f, f^\#)$ between l.r.s.'s $(\text{Spec } B, \mathcal{O}_{\text{Spec } B})$ & $(\text{Spec } A, \mathcal{O}_{\text{Spec } A})$ consists exactly of the morphisms induced by some $\varphi : A \xrightarrow{\text{homo}} B$.

Now we can define schemes.

Definition 2.5 (schemes).

- (1) An affine scheme is a l.r.s. (X, \mathcal{O}_X) which is isomorphic to some $(\text{Spec } A, \mathcal{O}_{\text{Spec } A})$;
- (2) A scheme is a l.r.s. (X, \mathcal{O}_X) which is locally affine, i.e. \exists an open cover $\{U\}$ s.t. each $(U, \mathcal{O}_X|_U)$ is an affine scheme;
- (3) A morphism of schemes is a morphism of l.r.s.'s.

Example 2.6 (schemes). In these examples, $k = \text{alg.cl } k$.

- (1) If R is a d.v.r., then $\text{Spec } R = \{\circ, \bullet\}$, where \circ is a generic point and \bullet is a closed point (see [1] P. 74 for detailed explanation);
- (2) $\mathbb{A}_k^1 = \text{Spec } k[x] = \{\circ\} \cup k$, where $\{\circ\}$ is a generic point and points in k are all closed;
- (3) $\mathbb{A}_k^2 = \text{Spec } k[x, y] = \{(0)\} \cup \{f \in k[x, y] \mid f \text{ is irreducible}\} = \{\circ\} \cup k^2 \cup \{f \in k[x, y] \mid f \text{ is irreducible, } \deg f \geq 2\}$. The first part is the generic point, the second part consists of closed points, and the third part consists of generic points of such curves $f(x, y) = 0$.
- (4) (*affine line with a doubled point) Let $X_1 = X_2 = \mathbb{A}_k^1$, $U_1 = U_2 = \mathbb{A}_k^1 \setminus \{0\}$. Glueing X_1 & X_2 along U_1 & U_2 via the identity map $U_1 \rightarrow U_2$, nothing is done except for $\{0\}$.

this gives a non-affine scheme.

Proposition 2.7 (generic points). *Let X be a scheme, then every non-empty irreducible closed subset Y of X has a unique generic point, i.e. a point $p \in Y$ s.t. $\overline{\{p\}} = Y$*

Let $U = \text{Spec } A$ be an affine open subset of X s.t. $U \cap Y \neq \emptyset$, then $U \cap Y$ is an irreducible closed subset of U (i.e. “reduced” to affine case), thus $U \cap Y = V(p)$ for some $p \in \text{Spec } A$. Obviously, $U \cap Y = \overline{\{p\}}^U = \overline{\{p\}} \cap U$. At the same time, $U \cap Y \neq \emptyset$ is open in Y , from the irreducibility, $\overline{U \cap Y}^Y = Y$, so $Y \subset \overline{\{p\}}$, i.e. $\overline{\{p\}} = Y$. For the uniqueness, if $y = \overline{\{p\}} = \overline{\{p'\}}$, then $V(p) = U \cap Y = V(p')$, thus $p = p'$.

Now we are going to a criterion for affine-ness (see [1]P.81 or [3]P.28).

Procedure 2.8 (Construction of X_f). *Let X be a scheme, $f \in \mathcal{O}_X(X)$*

1. $X_f = \{p \in X \mid f_p \notin \mathfrak{m}_p = \mathfrak{m}_{\mathcal{O}_p}$ (equivalently, f_p is invertible in \mathcal{O}_p)\};
2. properties of X_f :
 - (a) X_f is open in X ;
 - (b) $X_f \cap X_g = X_{fg}$;
 - (c) if X has a finite cover $\{U_i\}$, s.t. each $U_i \cap U_j$ is q.c., then $\mathcal{O}_X(X_f) = (\mathcal{O}_X(X))_f$.

Proposition 2.9 (*criterion for affine-ness). *Let X be a scheme, then X is affine $\iff \exists$ finitely many $\{f_i\}$ s.t.*

- (1) X_{f_i} are affine;
- (2) $\{f_i\}$ generates $\mathcal{O}_X(X)$.

Definition 2.10 (residue field). *Let X be a scheme, $(\mathcal{O}_x, \mathfrak{m}_x)$ be the local ring at $x \in X$. $k(x) = \mathcal{O}_x/\mathfrak{m}_x$ is called the residue field of x .*

Remark 2.11. *In order to define a morphism $f : \text{Spec } K \rightarrow X$, where K is a field, it suffices to identify a point $x \in X$ & an inclusion $k(x) \hookrightarrow K$. e.g. $k(x) \xrightarrow{\text{id}} k(x) \hookrightarrow \text{Spec } k(x) \hookrightarrow X$.*

2.2 Properties of schemes & morphisms I

Let's begin with an annoying table of definitions.

Definition 2.12 (some special schemes). *A scheme X is called*

- (1) *quasi-compact, if $\text{sp}(X)$ is q.c.;*
- (2) *connected, if $\text{sp}(X)$ is connected;*
- (3) *irreducible, if $\text{sp}(X)$ is irreducible;*
- (4) *reduced, if $\forall U \overset{\text{open}}{\subset} X, \mathcal{O}_X(U)$ is reduced, i.e. $\text{nil}(\mathcal{O}_X(U)) = \{0\}$;*
- (5) *integral, if $\forall U \overset{\text{open}}{\subset} X, \mathcal{O}_X(U)$ is a domain;*
- (6) *locally noetherian, if $\forall U = \text{Spec } A \overset{\text{open}}{\subset} X, A$ is noetherian;*
- (7) *noetherian, if X is l.n. & q.c.;*

Remark 2.13. The condition is (6) can be replaced with “ \exists a cover $\{U_i\}$ of X , where $U_i = \text{Spec } A_i \overset{\text{open}}{\subset} X$, each A_i is noetherian”. The equivalence between “ $\forall U$ ” & “ \exists a cover $\{U_i\}$ ” also holds for (1)(2)(3)(5).

Here's some connections between these definitions.

Proposition 2.14. *Let X be a scheme,*

- (1) X is integral $\iff X$ is reduced & irreducible;
- (2) if $X = \text{Spec } A$ is affine, then X is noetherian $\iff A$ is noetherian;

Let's continue with an annoying table of definitions.

Definition 2.15 (some special morphisms). *Let $f : X \rightarrow Y$ be a morphism between schemes, f is (called)*

- (1) *locally of finite type, if $\forall V = \text{Spec } B \overset{\text{open}}{\subset} Y, \exists$ a cover $\{U_j\}$ of $f^{-1}(V)$, where $U_j = \text{Spec } A_j \overset{\text{open}}{\subset} X$, each A_j is a f.g. B -algebra;*

(2) of finite type, if $\forall V = \text{Spec } B \stackrel{\text{open}}{\subset} Y, \exists$ a **finite** cover $\{U_j\}$ of $f^{-1}(V)$, where $U_j = \text{Spec } A_j \stackrel{\text{open}}{\subset} X$, each A_j is a f.g. **B-algebra**;;

(3) finite, if $\forall V = \text{Spec } B \stackrel{\text{open}}{\subset} Y, f^{-1}(V) = \text{Spec } A \stackrel{\text{open}}{\subset} X$, where A is a f.g. **B-module**;

(4) quasi-finite, if $\forall y \in Y, f^{-1}(y)$ is a finite set;

(5) quasi-compact, if $\forall V = \text{Spec } B \stackrel{\text{open}}{\subset} Y, f^{-1}(V)$ is q.c..

Here's a famous & useful trick.

Proposition 2.16 (Nike's trick). *Let X be a scheme, $\text{Spec } A, \text{Spec } B \stackrel{\text{open}}{\subset} X$, then $\text{Spec } A \cap \text{Spec } B$ is covered by (principle) open $\{\text{Spec } C\}$, which is open both in $\text{Spec } A$ & $\text{Spec } B$.*

$\forall p \in \text{Spec } A \cap \text{Spec } B$, take $f \in A, g \in B$ s.t. $p \in D_{\text{Spec } B}(g) \subset D_{\text{Spec } A}(f) \subset \text{Spec } A \cap \text{Spec } B$.

Let $g' = g|_{D_{\text{Spec } A}(f)} \in \mathcal{O}_{\text{Spec } A}(D_{\text{Spec } A}(f)) = A_f$ (since $D_{\text{Spec } A}(f) \subset \text{Spec } B$, this can be done). Then we write $g' = \frac{h}{f^n}$, where $h \in A, n \in \mathbb{N}$.

$$D_{\text{Spec } B}(g) = D_{\text{Spec } A_f}(g') = \text{Spec}(A_f)_{g'} = \text{Spec } A_{fh},$$

where “ $=$ ” holds on the “set” level. Thus $D_{\text{Spec } B}(g)$ is open in $\text{Spec } B$.

Remark 2.17. *As for intersections of the form $U \cap \text{Spec } A$, where U is an arbitrary open set, the result is easier (since openness is “weaker”): $U \cap \text{Spec } A$ is covered by open $\{D_{\text{Spec } A}(f)\}$.*

Proposition 2.18 (closed points). *Let X be a scheme which is of finite type over a field k , then the set of closed points is dense in X .*

According to the condition, we have a finite cover $\{U_i\}$ of X ($\text{Spec } k$ is a singleton), where $U_i = \text{Spec } A_i \stackrel{\text{open}}{\subset} X$, each A_i is a f.g. k -algebra. Only need to prove that, $\forall U = \text{Spec } B \stackrel{\text{open}}{\subset} X$, it contains a closed point of X . Let p be a closed point in U , and consider $U_i \ni p$. Using 2.16, take a principle open set $p \in D(f) \neq \emptyset$ in $U_i \cap U$. The inclusion $i : D(f) \rightarrow U_i$ induces $i^\# : A_i \rightarrow (A_i)_f$ between Jacobson rings, so $p = i(p)$ is closed in U_i . Thus p is closed in X . The existence of such $p \in U$ follows the existence of maximal ideals (reduce to affine case).

Remark 2.19. 2.18 fails generally, e.g. (1) $X = \{\circ, \bullet\}$.

problem 3.3 & 3.13

Definition 2.20 (open & closed immersions). *Let $f : X \rightarrow Y$ be a morphism of schemes, f is called a*

- (1) *open immersion, if $(X, \mathcal{O}_X) \xrightarrow{f} (Z, \mathcal{O}_Z)$, for some open subscheme (Z, \mathcal{O}_Z) of Y ;*
- (2) *closed immersion, if $\text{sp}(X) \xrightarrow{f} \text{sp}(Z)$ & $f^\# : \mathcal{O}_Y \rightarrow f_* \mathcal{O}_X$ is surjective;*
- (3) *immersion, if f can be factorized as $h \circ g : X \rightarrow U \rightarrow Y$, where $g : X \rightarrow U$ is a closed imm. & $h : U \rightarrow Y$ is an open imm..*
- (4) *2 closed imm.'s $f_1 : X_1 \rightarrow Y, f_2 : X_2 \rightarrow Y$ are equivalent if \exists an isom. $g : X_1 \rightarrow X_2$ s.t. the following diagram commutes.*

$$\begin{array}{ccc}
 X_1 & \xrightarrow{f_1} & Y \\
 \sim \downarrow & \nearrow f_2 & \\
 X_2 & &
 \end{array}$$

The following proposition characterizes closed immersions in affine case.

Proposition 2.21. *Let A be a ring, X be a scheme. $X \rightarrow \text{Spec } A$ is a closed imm. $\iff (X, \mathcal{O}_X) \cong (\text{Spec } A/\mathfrak{a}, \mathcal{O}_{\text{Spec } A})$ for some ideal \mathfrak{a} of A .*

Definition 2.22 (fiber product & fiber).

(1) *Let X, Y be schemes over S , the fiber product $X \times_S Y$ is defined by the following diagram of morphisms:*

$$\begin{array}{ccc}
 Z & \xrightarrow{\quad} & X \times_S Y \xrightarrow{\text{pr}_1} X \\
 & \dashrightarrow & \downarrow \text{pr}_2 \\
 & & Y \xrightarrow{\quad} S
 \end{array}$$

(2) *the fiber of $f : X \rightarrow Y$ at y is defined by $X_y = X \times_Y \text{Spec } k(y)$*

$$\begin{array}{ccc}
 X \times_Y \text{Spec } k(y) & \xrightarrow{\text{pr}_1} & X \\
 \text{pr}_2 \downarrow & & \downarrow \\
 \text{Spec } k(y) & \hookrightarrow & Y
 \end{array}$$

where “ \hookrightarrow ” exists in the sense of 2.11.

2.3 Properties of schemes & morphisms II

2.4 Quasi-coherent sheaves

2.5 Projective sheaves

A Category theory

A.1 colimit & limit

Definition A.1 (direct system). *Let I be a directed set, a direct system $\{X_i, f_{ij}\}$ over I consists of a family of objects $\{X_i\}_{i \in I}$ & morphisms $f_{ij} : X_i \rightarrow X_j$ s.t.*

- (1) $f_{ii} = \text{id}_{X_i}, \forall i;$
- (2) $f_{ik} = f_{jk} \circ f_{ij}, \forall i \leq j \leq k.$

“colimit” has many names, including “direct limit”, “inductive limit”.

Definition A.2 (colimit). *Let $\{X_i, f_{ij}\}$ be a direct system, then colimit $\varinjlim X_i$ is defined by the following diagram.*

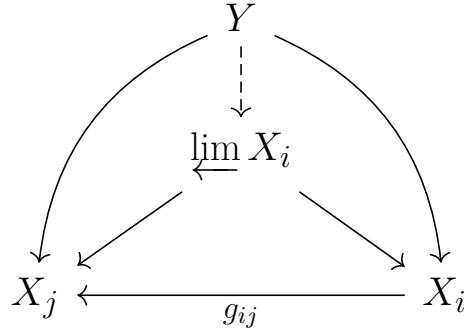
$$\begin{array}{ccc}
 X_i & \xrightarrow{f_{ij}} & X_j \\
 & \searrow & \swarrow \\
 & \varinjlim X_i & \\
 & \downarrow & \\
 & Y &
 \end{array}$$

Definition A.3 (inverse system). *Let I be a directed set, a inverse system $\{X_i, g_{ij}\}$ over I consists of a family of objects $\{X_i\}_{i \in I}$ & morphisms $g_{ij} : X_j \rightarrow X_i$ s.t.*

- (1) $g_{ii} = \text{id}_{X_i}, \forall i;$
- (2) $g_{ik} = g_{ij} \circ g_{jk}, \forall i \leq j \leq k.$

“limit” has many names, including “inverse limit”, “projective limit”.

Definition A.4 (limit). *Let $\{X_i, g_{ij}\}$ be an inverse system, then limit $\varprojlim X_i$ is defined by the following diagram.*



Example A.5 (colimit & limit).

(1) Let I be equipped with the discrete order ($i \leq j \iff i = j$), $\{X_i\}$ be a family of objects, then

- (a) $\varinjlim X_i = \coprod X_i$, it's called the sum or coproduct;
- (b) $\varprojlim X_i = \prod X_i$, it's called the product.

(2) Let $I = \emptyset$,

- (a) the colimit coincides with the initial object;
- (b) the limit coincides with the terminal object.

(3) In the category of R -algebras, $A \coprod B = A \otimes_R B$;

(4) Let $I = \{a, b, c\}$, where $a \leq b, c$, $\{X_i\}$ be a family of objects, then

$$\varprojlim X_i = X_b \times_{X_a} X_c$$

Proposition A.6 (with adjoint functors). Let \mathcal{C}, \mathcal{D} be 2 categories, F, G be a pair of adjoint functors, i.e.

$$(1) \mathcal{C} \begin{smallmatrix} F \\ \rightleftarrows \\ G \end{smallmatrix} \mathcal{D}; \quad (2) \text{Hom}_{\mathcal{C}}(G(-), \star) \cong \text{Hom}_{\mathcal{D}}(-, F(\star)).$$

Let I be a directed set,

(1) $\{Y_i\} \subset \mathcal{D}$ be a direct system, then $G(\varinjlim Y_i) = \varinjlim G(Y_i)$;

(2) $\{X_i\} \subset \mathcal{C}$ be an inverse system, then $F(\varprojlim X_i) = \varprojlim F(X_i)$.

B Commutative algebra

B.1 Valuation rings

Definition B.1 (valuation rings). *Let k be a field, A be a subring (thus a domain) of k . We say A is a valuation ring of k if $\forall x \neq 0 \in k$, either $x \in A$ or $\frac{1}{x} \in A$.*

Proposition B.2 (properties of v.r.s). *Let A be a v.r. of k .*

- (1) *A is a local ring, and $\mathfrak{m}_A = \{x \in A \mid x \text{ is not invertible}\} = \{x \neq 0 \in A \mid \frac{1}{x} \notin A\} \cup \{0\}$;*
- (2) *A is integrally closed in k ;*
- (3) *if B is a ring s.t. $A \subset B \subset k$, then B is also a v.r. of k . Moreover,*
 - (a) $\mathfrak{m}_B \subset A$;
 - (b) \mathfrak{m}_B is a prime ideal of A ;
 - (c) $B = A_{\mathfrak{m}_B}$, i.e. B is a local ring of A
- (4) *$\forall 2$ ideals $\mathfrak{a}, \mathfrak{b}$ of A , either $\mathfrak{a} \subset \mathfrak{b}$ or $\mathfrak{a} \supset \mathfrak{b}$. Moreover, if any subring B of k with this comparable properties, must be a v.r..*

Now we are going to construct v.r.'s of a field k .

Procedure B.3. *Fix a field k and an algebraically closed field Ω .*

1. $\Sigma = \{(A, f) \mid A \subset k, f : A \xrightarrow{\text{homo}} \Omega\}$;

2. define a partial order on Σ :

$$(A, f) \leq (B, g) \iff A \subset B \& g|_A = f,$$

then Σ has at least one maximal element (Zorn's lemma);

3. let (B, g) be a maximal element of Σ , then

(a) (B, g) is a local ring & $\mathfrak{m}_B = \ker g$;

(b) (B, g) is a v.r. of k .

Corollary B.4. Let A be a subring of k , then $\text{int.cl } A = \cap B$, where the intersection is taken over $\{B \mid A \subset B \subset k \text{ & } B \text{ is a v.r. of } k\}$.

- Obviously $\text{int.cl } A \subset \cap B$;
- Conversely, if $x \in \text{int.cl } A$ but $x \notin A$, let $B = A[\frac{1}{x}]$, then $\frac{1}{x}$ is not invertible in B . Let \mathfrak{m} be a maximal ideal of B s.t. $\frac{1}{x} \in \mathfrak{m}$, and let $\Omega = \text{alg.cl } B/\mathfrak{m}$. The quotient gives a map $f : B \rightarrow \Omega$. From B.3, (B, f) can be extended to some valuation ring (C, g) . But $f(\frac{1}{x}) = 0$, thus $\frac{1}{x} \in \ker C$, i.e $x \notin C$.

There's another construction which happens to be equivalent to B.3.

Procedure B.5. Fix a field k .

1. $\Sigma = \{(A, \mathfrak{m}) \mid A \subset k \text{ is a local ring with maximal ideal } \mathfrak{m}\}$;
2. define a partial order (called dominance) on Σ :

$$(A, \mathfrak{m}) \leqslant (B, \mathfrak{n}) \iff A \subset B \text{ & } \mathfrak{m} \subset \mathfrak{n},$$

then Σ has at least one maximal element;

3. (A, \mathfrak{m}) is a maximal element of $\Sigma \iff A$ is a v.r. of k .

Proposition B.6. Let $A \subset B$ be 2 domains, B f.g. over A . $\forall x \neq 0 \in B, \exists u \neq 0 \in A$ s.t. any $f : A \rightarrow \Omega = \text{alg.cl } \Omega, f(u) \neq 0$ can be extended to $g : B \rightarrow \Omega$ with $g(v) \neq 0$.

Using B.6, we can prove one form of Hilbert's Nullstellensatz.

Corollary B.7. Let k be a field and B a f.g. k -algebra. If B is a field, the B/k is a finite algebraic extension.

Take $A = k, v = 1, \Omega = \text{alg.cl } k$, then we get some $g : B \rightarrow \Omega$, which is non-trivial thus injective.

Explanation: Consider only the case when $B = k[x]$. Take some $\xi \neq 0 \in \Omega = \text{alg.cl } k$, we get a homomorphism by sending x to ξ .

Finally, we explore the relation between v.r.'s & valuations of a field.

Definition B.8 (valuations). *Let k be a field, G be a totally ordered abelian group. A valuation of k with values in G is a mapping $v : k^* \rightarrow G$ s.t.*

- (1) $v(xy) = v(x)v(y)$;
- (2) $v(x+y) \geq \min\{v(x), v(y)\}$, if $x+y \neq 0$.

Procedure B.9.

1. From a v.r A of k to a valuation

- (a) $U = \{\text{units of } A\}, G = k^*/U$;
- (b) define a partial order on G :

$$[x] \leq [y] \iff \frac{y}{x} \in A,$$

then G becomes a **totally ordered group**, moreover, the quotient $v : k \rightarrow G$ is a **valuation with values in G** .

2. From a valuation $v : k^* \rightarrow G$ of k to a v.r.

- (a) $A = \{x \in k^* \mid v(x) \geq 0\} \cup \{0\}$;
- (b) A is a v.r. of k , which is called the v.r. of v .

B.2 Jacobson rings

Definition B.10 (Jacobson rings). *We say a ring A is a Jacobson ring if $\forall \mathfrak{p} \in \text{Spec } A, \mathfrak{p} = \cap \mathfrak{m}$, where the intersection is taken over $\{\mathfrak{m} \in \text{Spm } A \mid \mathfrak{p} \subset \mathfrak{m}\}$.*

Remark B.11. *In non-commutative cases, Jacobson rings are defined via primitive ideals.*

Example B.12 (Jacobson rings). *The following rings are Jacobson.*

- (1) *A field k ;*
- (2) *A polynomial ring $k[x_1, \dots, x_n]$;*
- (3) *A p.i.d. A with $\text{Jac}(A) = 0$;*
- (4) *A ring of Krull dimension 0, e.g. a ring with only one prime ideal.*

Here's an interesting example.

Example B.13 (\mathbb{N} Jacobson yet not noetherian). *Let k be a field, $R = k[x_1, x_2, \dots]/(x_1^2, x_2^2, \dots)$. The only prime ideal of R is (x_1, x_2, \dots) , which is not f.g..*

Proposition B.14 (properties of Jacobson rings).

- (1) *A ring A is Jacobson $\iff A[x]$ is Jacobson ([9]P.18);*
- (2) *As a result of (1), a f.g. algebra over a Jacobson ring is also Jacobson;*
- (3) *Let A, B be Jacobson, $f : A \rightarrow B$, then $f^{-1}(\mathfrak{m})$ is a maximal ideal of A , \forall maximal ideal \mathfrak{m} of B ;*
- (4) *As a result of (3), $f^\# : \text{Spec } B \rightarrow \text{Spec } A$ maps closed points in $\text{Spec } B$ to closed points in $\text{Spec } A$.*

B.3 Nakayama's lemma

Theorem B.15 (Nakayama's lemma). *Let M be a f.g. A -module, \mathfrak{a} be an ideal. If $\mathfrak{a}M = M$, then $\exists x \in A$ s.t.*

- (1) $x \equiv 1 \pmod{\mathfrak{a}}$;
- (2) $xM = 0$.

Corollary B.16. *Let M be a f.g A -module, ([4]P.556)*

- (1) *if $u : M \xrightarrow{\text{homo}} M$ is surjective, then u is bijective;*
- (2) *if A is local with \mathfrak{m} , then a subset $\{m_1, \dots, m_r\}$ generates $M \iff \{m_1, \dots, m_r\}$ generates $M/\mathfrak{m}M$ over A/\mathfrak{m} .*

(1) Consider M as $A[x]$ -module, where $x \cdot m = u(m)$ ([10]P.9);

(2) “ \Rightarrow ” is obvious. As for “ \Leftarrow ”, let $N = (x_1, \dots, x_r)$, then $N \hookrightarrow M \twoheadrightarrow M/\mathfrak{m}M$ is exact, i.e. $M = N + \mathfrak{m}M$.

Remark B.17. *Essentially, B.15 generalizes the existence of annihilating polynomial in linear algebra. Thus the idea in (1) is natural.*

C Sheaves

We consider only sheaves of Abelian groups, thus rings & modules are treated as special cases.

Definition C.1 (presheaves & sections & morphisms). *Let X be a topo. space,*

- (1) *a presheaf \mathcal{F} on X is a contra. functor from $\text{Open}(X) \rightarrow \mathbf{Ab}$;*
- (2) *a morphism between 2 presheaves \mathcal{F}, \mathcal{G} is a natural transformation from $\mathcal{F} \rightarrow \mathcal{G}$.*

Or we can adopt human's language,

- (1) *a presheaf \mathcal{F} on X consists of*
 - (a) $\mathcal{F}(U) \in \mathbf{Ab}, \forall U \in \text{Open}(X)$;
 - (b) *restriction $\rho_{UV} : \mathcal{F}(U) \rightarrow \mathcal{F}(V), \forall V \subset U \in \text{Open}(X)$;*

s.t.

- (a) $\mathcal{F}(\emptyset) = 0$;

- (b) $\rho_{UU} = \text{id}$;
- (c) $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

- (2) any element $s \in \mathcal{F}(U)$ is called a section of \mathcal{F} on U , we sometimes write $\Gamma(U, \mathcal{F})$ for $\mathcal{F}(U)$;
- (3) a morphism $f : \mathcal{F} \rightarrow \mathcal{G}$ consists of morphisms $f(U) : \mathcal{F}(U) \rightarrow \mathcal{G}(U)$, $\forall U \in \text{Open}(X)$, s.t. the following diagram commutes $\forall V \subset U \in \text{Open}(X)$

$$\begin{array}{ccc} \mathcal{F}(U) & \xrightarrow{f(U)} & \mathcal{G}(U) \\ \rho_{UV} \downarrow & & \downarrow \rho_{UV} \\ \mathcal{F}(V) & \xrightarrow{f(V)} & \mathcal{G}(V) \end{array}$$

Definition C.2 (sheaves). Let X be a topo. space. A sheaf \mathcal{F} on X is a presheaf, s.t. if $U \in \text{Open}(X)$, $\{V_i\} \subset \text{Open}(X)$ is a cover of U ,

- (1) (factorizing) if $s \in \mathcal{F}(U)$ s.t. $s|_{V_i} = 0, \forall i$, then $s = 0$;
- (2) (glueing) if $s_i \in \mathcal{F}(V_i)$ s.t. $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}, \forall i, j$, then $\exists s \in \mathcal{F}(U)$ s.t. $s|_{V_i} = s_i, \forall i$.

Definition C.3 (stalks & germs). Let X be a topo. space $p \in X$, \mathcal{F} be a presheaf on X .

- (1) We define the stalk \mathcal{F}_p at p by

$$\mathcal{F}_p = \varinjlim \mathcal{F}(U),$$

where the colimit is taken over $\{U \xrightarrow{\text{open}} X \mid p \in U\}$;

- (2) Any element $s_p \in \mathcal{F}_p$ is called a germ of \mathcal{F} at p .

Remark C.4. To be more concrete, $\mathcal{F}_p = \{(U, s) \mid p \in U \xrightarrow{\text{open}} X, s \in \mathcal{F}(U)\} / \sim$, where $(U, s) \sim (V, t) \iff \exists W \xrightarrow{\text{open}} X \text{ s.t.}$

- (1) $p \in W \subset U \cap V$;

(2) $s|_W = t|_W$.

Thus any germ s_p comes from some sections.

Proposition C.5 (sheaves are determined by stalks). *Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 sheaves on X , $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ be a morphism. Then*

- (1) φ is injective $\iff \varphi_p : \mathcal{F}_p \rightarrow \mathcal{G}_p$ is injective $\forall p \in X$;
- (2) φ is surjective $\iff \varphi_p : \mathcal{F}_p \rightarrow \mathcal{G}_p$ is surjective $\forall p \in X$;
- (3) *Thus φ is an isom. $\iff \varphi_p : \mathcal{F}_p \rightarrow \mathcal{G}_p$ is an isom. $\forall p \in X$;*

Remark C.6. *This result applies **only** to sheaves.*

Procedure C.7 (sheafification). *Let X be a topo. space, \mathcal{F} be a presheaf on X .*

1. $\forall U \stackrel{\text{open}}{\subset} X$, define $\mathcal{F}^\ddagger(U) = \{s : U \rightarrow \bigcup_{p \in U} \mathcal{F}_p \mid s \text{ satisfies 1a\&1b}\}$:

- (a) $\forall p \in U, s(p) \in \mathcal{F}_p$
- (b) $\forall p \in U, \exists p \in V \subset U, t \in \mathcal{F}(V) \text{ s.t. } \forall q \in V, t_q = s(q)$.

2. properties of \mathcal{F}^\ddagger :

- (a) \mathcal{F}^\ddagger is a sheaf;
- (b) \exists a natural morphism $\theta : \mathcal{F} \rightarrow \mathcal{F}^\ddagger$, which satisfies the following universal property.

$$\begin{array}{ccc} \mathcal{F} & \xrightarrow{\theta} & \mathcal{F}^\ddagger \\ \downarrow & \swarrow \exists! & \\ \mathcal{G}(\text{sheaf}) & & \end{array}$$

Moreover, the pair $(\mathcal{F}^\ddagger, \theta)$ is unique in this sense.

(c) $\mathcal{F}_p = \mathcal{F}_p^\ddagger, \forall p \in X$.

Definition C.8 (kernel, image & cokernel). *Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 sheaves on X , $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ be a morphism.*

- (1) $\ker \varphi(U) := \ker(\varphi(U));$
- (2) $\text{p.im } \varphi(U) := \text{im}(\varphi(U));$
- (3) $\text{p.coker } \varphi(U) := \text{p.coker}(\varphi(U))$

In general, $\text{p.im } \varphi, \text{p.coker } \varphi$ fail to be sheaves, so we define

- (1) $\text{im } \varphi = (\text{p.im } \varphi)^\ddagger;$
- (2) $\text{coker } \varphi = (\text{p.coker } \varphi)^\ddagger.$

Definition C.9 (injective & surjective morphisms, exact sequences). Let X be a topo. space,

- (1) a sequence $\cdots \rightarrow \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \rightarrow \cdots$ of sheaves on X is called exact if $\text{im } \varphi^{i-1} = \ker \varphi^i, \forall i;$
- (2) $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ is called injective if $0 \rightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G}$ is exact;
- (3) $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ is called surjective if $\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \rightarrow 0$ is exact.

Proposition C.10 (exactness on the stalk level). Let X be a topo. space, a sequence $\cdots \rightarrow \mathcal{F}^{i-1} \xrightarrow{\varphi^{i-1}} \mathcal{F}^i \xrightarrow{\varphi^i} \mathcal{F}^{i+1} \rightarrow \cdots$ of sheaves on X is exact $\iff \cdots \rightarrow \mathcal{F}_p^{i-1} \xrightarrow{\varphi_p^{i-1}} \mathcal{F}_p^i \xrightarrow{\varphi_p^i} \mathcal{F}_p^{i+1} \rightarrow \cdots$ is exact $\forall p \in X$.

Proposition C.11 (left-exactness of restriction). Let X be a topo. space, $U \xrightarrow{\text{open}} X$. Then the functor $\Gamma(U, \star)$ is left exact, i.e. if $0 \rightarrow \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}''$ is an exact sequence of sheaves on X , then $0 \rightarrow \mathcal{F}'(U) \xrightarrow{\varphi(U)} \mathcal{F}(U) \xrightarrow{\psi(U)} \mathcal{F}''(U)$ is an exact sequence in **Ab**.

Remark C.12. The problem occurs since $(\text{im } \varphi)(U) \neq \text{im}(\varphi(U)) = (\text{p.im } \varphi)(U)$ in general. Roughly speaking, the left-exactness comes from (3) of the following proposition, since $\ker(\psi(U)) = (\ker \psi)(U) = (\text{im } \varphi)(U) \cong \mathcal{F}'(U) \cong (\text{p.im } \varphi)(U) = \text{im}(\varphi(U))$.

Proposition C.13 (on injectivity). *Let X be a topo. space, \mathcal{F}, \mathcal{G} be 2 presheaves on X , $\varphi : \mathcal{F} \rightarrow \mathcal{G}$ be a morphism.*

(1) *If $\varphi(U) : \mathcal{F}(U) \rightarrow \mathcal{G}(U)$ is injective $\forall U \overset{\text{open}}{\subset} (X)$, then the induced morphism $\varphi^\ddagger : \mathcal{F}^\ddagger \rightarrow \mathcal{G}^\ddagger$ is injective;*

$$\begin{array}{ccc} \mathcal{F} & \xrightarrow{\theta_1} & \mathcal{F}^\ddagger \\ \varphi \downarrow & & \nearrow \\ \mathcal{G} & & \\ \downarrow \theta_2 & & \\ \mathcal{G}^\ddagger & & \end{array}$$

(2) *As a result of (1), if φ is a morphism of sheaves, then $\text{im } \varphi$ is naturally a subsheaf of \mathcal{G} . Moreover, $\text{im } \varphi \cong \mathcal{F} / \ker \varphi$.*

$$\mathcal{F}(U) \longrightarrow \text{p.im } \varphi(U) \hookrightarrow \mathcal{G}(U)$$

$$\begin{array}{ccc} \mathcal{F} & & \\ \downarrow & \searrow & \\ \text{p.im } \varphi & \longrightarrow & \text{im } \varphi \\ \downarrow & & \nearrow \\ \mathcal{G} & & \end{array}$$

(3) *As a result of (2), if $0 \rightarrow \mathcal{F} \xrightarrow{\varphi} \mathcal{G}$ is exact, then $\mathcal{F} \cong \text{im } \varphi$.*

Definition C.14 (direct image & inverse image). *Let $f : X \rightarrow Y$ be a conti. map of topo. spaces, \mathcal{F}, \mathcal{G} are sheaves on X, Y resp.,*

(1) $(f_* \mathcal{F})(V) := \mathcal{F}(f^{-1}(V))$, this gives the direct image $f_* \mathcal{F}$ on Y ;

(2) $(f^{-1} \mathcal{G})(U) := \varinjlim \mathcal{G}(V)$, where the colimit is taken over $\{V \overset{\text{open}}{\subset} Y \mid f(U) \subset V\}$, this gives the inverse image $f^{-1} \mathcal{G}$ on X .

Remark C.15.

- (1) Calculating $f_*\mathcal{F}$ is always a crucial problem in algebraic geometry;
- (2) $f^{-1}\mathcal{G}$ is difficult to define, but easy to use.

Proposition C.16 ($f^{-1}(-)$ & $f_*(\star)$ are adjoint). Let $f : X \rightarrow Y$ be a conti. map of topo. spaces, \mathcal{F}, \mathcal{G} are sheaves on X, Y resp.,

$$\mathrm{Hom}_X(f^{-1}\mathcal{G}, \mathcal{F}) = \mathrm{Hom}_Y(\mathcal{G}, f_*\mathcal{F}).$$

More precisely, we have 2 natural maps $f^{-1}f_*\mathcal{F} \rightarrow \mathcal{F}$ & $\mathcal{G} \rightarrow f_*f^{-1}\mathcal{G}$.

Let's examine some examples.

Example C.17 (sheaves). Let X be a topo. space, A be an ab. grp..

(1) (constant sheaf) Equip A with the disc. topo.. Define $\mathcal{A}(U) = \{f : U \xrightarrow{\text{conti.}} A\}, \forall U \subset X$, then $\mathcal{A}(U) \cong A$ if U is connected.

(2) (skyscraper sheaf) For $p \in X$, define $i_p(A)(U) = \begin{cases} A, & \text{if } p \in U \\ 0, & \text{otherwise} \end{cases}$.

Note that $(i_p(A))_q = \begin{cases} A, & \text{if } q \in \overline{\{p\}} \\ 0, & \text{otherwise} \end{cases}$. Also, let \mathcal{A} be the const. sheaf on $\{p\}$, $j : \{p\} \rightarrow X$, then $i_p(A) = j_*\mathcal{A}$.

Definition C.18 (flasque sheaves). Let X be a topo. space, \mathcal{F} be a sheaf on X . \mathcal{F} is called flasque if $\rho_{UV} : \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ is surjective $\forall V \subset U \in \mathrm{Open}(X)$.

Proposition C.19 (properties of flasque sheaves).

(1) Let X be a topo. space, $0 \rightarrow \mathcal{F}' \xrightarrow{\varphi} \mathcal{F} \xrightarrow{\psi} \mathcal{F}'' \rightarrow 0$ be an exact sequence of sheaves on X

(a) if \mathcal{F}' is flasque, then $\Gamma(U, \star)$ is exact, i.e. $0 \rightarrow \mathcal{F}'(U) \rightarrow \mathcal{F}(U) \rightarrow \mathcal{F}''(U) \rightarrow 0$ is an exact sequence in \mathbf{Ab} ;

(b) if \mathcal{F}' & \mathcal{F} are flasque, then \mathcal{F}'' is flasque.

(2) Let $f : X \rightarrow Y$ be a conti. map of topo. spaces, \mathcal{F} be a flasque sheaf on X , then $f_*\mathcal{F}$ is a flasque sheaf on Y .

(3) Let X be a topo. space, \mathcal{F} be a sheaf on X . Define $\mathcal{F}^\dagger(U) = \{s : U \rightarrow \bigcup_{p \in U} \mathcal{F}_p \mid \forall p \in U, s(p) \in \mathcal{F}_p\}$. Then

- (a) \mathcal{F}^\dagger is a flasque sheaf;
- (b) \exists a natural injective morphism $\mathcal{F} \rightarrow \mathcal{F}^\dagger$.

$$\begin{array}{ccc} \mathcal{F} & \xrightarrow{\quad} & \mathcal{F}^\dagger \\ \downarrow & \swarrow \exists! & \\ \mathcal{G}(\text{fls. sh.}) & & \end{array}$$

0-extension of sheaves.

参考文献

- [1] Robin Hartshorne, *Algebraic geometry*, vol. 52, Springer Science & Business Media, 2013.
- [2] David Mumford, *The red book of varieties and schemes: includes the Michigan lectures (1974) on curves and their Jacobians*, vol. 1358, Springer, 2004.
- [3] Lei Fu, *Algebraic Geometry*, Tsinghua University Press Beijing, 2006.
- [4] Ulrich Görtz and Torsten Wedhorn, *Algebraic Geometry I: Schemes*, Springer, 2010.
- [5] David Eisenbud and Joe Harris, *The geometry of schemes*, vol. 197, Springer Science & Business Media, 2006.
- [6] Igor R Shafarevich, *Basic algebraic geometry 2: Schemes and complex manifolds*, Springer Science & Business Media, 2013.
- [7] Ravi Vakil, “The rising sea: Foundations of algebraic geometry,” 2024.
- [8] Michael Atiyah, *Introduction to commutative algebra*, CRC Press, 2018.

- [9] Irving Kaplansky, *Commutative Rings*, Allyn and Bacon, 1970.
- [10] Hideyuki Matsumura, *Commutative ring theory*, Number 8. Cambridge university press, 1989.