Algebraic Geometry(rv)

(24fall)quiddite

This is a very very brief note based on a course lectured by Prof.
Zhang, which covers roughly the first 2 chapters of [], with more examples.
Good refenences are [, E, , @, H, E, H] (the first three books are used
frequently) & [] [ type it in order to review & tide up my mind, so don’t

blame me for the abundant typos & mis-usages of symbols, terms blabla.
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1 Varieties

2 Schemes
2.1 Schemes

Definition 2.1 (spectrum of a ring). Let A be a ring, the spectrum is

a ringed space (Spec A, Ogpec 4) given by
(1) Spec A with the Zariski topology;
(2) OSpecA(U) ={s:u— HpeU AP}‘S(p) € AP}'

Luckily, the tidious construction above is used not that often. We

always simply use the properties suggested by the following proposition.
Proposition 2.2 (*) Let A be a ring,

(1) for and p € Spec A, Op = Ap;

(2) for any f € A,Ospee a(D(f)) = Ay;

(3) as a result of |(2), Ospec a(Spec A) = A.

Definition 2.3 (ringed spaces and morphisms).
(1) A ringed space is a pair (X,Ox);

(2) A locally ringed space is a r.s. whose stalks Ox p are local rings
VP e X;

(8) A morphism between r.s.’s (X,O0x) & (Y,Oy) is a pair (f, f#),
where f: X contl, v gy f#: 0y = f,O0x;

(4) A morphism between l.1.s.’s is a morphism X i> Y between r.s.’s,
which induces local homomorphisms f# : Oyyf(p) — Oxp, i.c.

(fﬁ)—l preserves the mazximal ideal.

Proposition 2.4.



(1) (Spec A, Ogpec 4) is a L.7.7s.;

(2) The set of morphisms (f, f) between Lr.s.’s (Spec B, Ogpec B)
& (Spec A, Ogpec 4) consists exactly of the morphisms induced by

h
some ¢ : A —22 B.

Now we can define schemes.

Definition 2.5 (schemes).

(1) An affine scheme is a l.r.s. (X, Ox) which is isomorphic to some
(Spec A, Ogpec 4)

(2) A scheme is a l.r.s. (X,Ox) which is locally affine, i.e. 3 an
open cover {U} s.t. each (U,Ox|ir) is an affine scheme;

(8) A morphism of schemes is a morphisms of l.7.s.’s.
Example 2.6 (schemes). In these examples, k = alg.cl k.

(1) If R is a d.v.r., then Spec R = {o, e}, where o is a generic point
and e is a closed point(see [1]P.7} for detailed explanation);

(2) A} = Spec k[z] = {0} Uk, where {0} is a generic point and points

in k are all closed;

(3) A7 = Speck[z,y] = {(0)} U{f € k[z,y]| f is irreducible} = {o} U
K2U{f € klx,y]| f is irreducible,deg f > 2}. The first part is the
generic point, the second part consists of closed points, and the

third part consists of generic points of such curves f(x,y) = 0.
(4) (Raffine line with a doubled point) Let X1 = Xo = A]ﬁ,, U =U; =

A,lc\{O} Glueing X1 € Xo along Uy & Uy via the identity map
Ui — U, nothing is done except for {0}.

this gives a mon-affine scheme.



Proposition 2.7 (generic points). Let X be a scheme, then every non-
empty irreducible closed subset Y of X has a unique generic point,
r.e. a pointpeY s.t. @ =Y

Let U = Spec A be an affine open subset of X s.t. UNY # (), then UNY
is an irreducible closed subset of Uf(i.e. “reduced” to affine case), thus
UNY = V(p) for some p € Spec A. Obviously, UNY = {p}U = {p}nU.
At the same time, U NY # ( is open in Y, from the irreducibility,
Uﬂ—YY =Y, soY C @, ie. @ = Y. For the uniqueness, if
y={pt={p}, then V(p) =UNY =V('), thus p = p/.

Now we are going to a criterion for affine-ness(see [1]P.81 or [3]P.28).
Procedure 2.8 (Construction of X¢). Let X be a scheme, f € Ox(X)
1. Xy ={p€ X|fp ¢ myp =mp (equivalently, f, is invertible in Op)};
2. properties of Xy:
(a) X; is open in X;
(b) XN Xy=Xypy;

(c) if X has a finite cover {U;}, s.t. each U;NU; is q.c.,
then OX(Xf) = (OX(X))f

Proposition 2.9 (Fcriterion for affine-ness). Let X be a scheme, then
X is affine <= 3 finitely many {f;} s.t.

(1) Xy, are affine;

(2) {fi} generates Ox(X).

Definition 2.10 (residue field). Let X be a scheme, (O, my) be the
local ring at x € X. k(z) = Oy /my is called the residue field of x.

Remark 2.11. In order to define a morphism f : Spec K — X,
where K is a field, it suffices to identify a point x € X & an inclusion
k(x) — K. e.g. k(x) id, k(x) e~ Speck(z) — X.
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2.2 Properties of schemes & morphisms I

Let’s begin with an annoying table of definitions.
Definition 2.12 (some special schemes). A scheme X is called
(1) quasi-compact, if sp(X) is q.c.;
(2) connected, if sp(X) is connected;
(8) irreducible, if sp(X) is irreducible;
(4) reduced, if YU c X, Ox(U) is reduced, i.e. nil(Ox(U)) = {0};
(5) integral, if VU c X, Ox(U) is a domain;
(6) locally noetherian, if VU = Spec A O%n X, A is noetherian;

(7) noetherian, if X is l.n. & q.c.;

Remark 2.13. The condition is [(6} can be replaced with “3 a cover
{U;} of X, where U; = Spec A; Olgn X, each A; is noetherian’.
The equivalence between “NYU” & ‘3 a cover {U;}” also holds for

(heelislis).

Here’s some connections between these definitions.

Proposition 2.14. Let X be a scheme,

(1) X is integral <= X is reduced & irreducible;

(2) if X = Spec A is affine, then X is noetherian <= A is noethe-
rian,
Let’s continue with an annoying table of definitions.

Definition 2.15 (some special morphisms). Let f : X — Y be a mor-

phism between schemes, f is (called)

1) locally of finite type, if YV = Spec B Ozgn Y, d a cover {U;} of
J
V), where U; = Spec A; O]gn X, each Aj is a f.g. B-algebra;
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(2) of finite type, if YV = Spec B c Y,3 a finite cover {U;} of
f7H(V), where U; = Spec A - X, each Ajisa f.g. B-algebra;;

(3) finite, if VV = Spec B O]gn Y, f~HV) = Spec A Opcen X, where A is
a f.g. B-module;

(4) quasi-finite, if Vy € Y, f~Y(y) is a finite set;
(5) quasi-compact, if YV = Spec B O}gn Y, f~XV) is q.c..
Here’s a famous & useful trick.

Proposition 2.16 (Nike’s trick). Let X be a scheme, Spec A, Spec B

open

C X, then Spec AN Spec B is covered by (principle) open {Spec C'},
which is open both in Spec A & Spec B.

Vp € Spec A N Spec B, take f € A,g € B st. p € Dgpecplg) C
Dgpec A(f) C Spec AN Spec B.

Let ¢ = glpg,.. a(f) € Ospec A(Dspec a(f)) = Af(since Dgpec a(f) C
Spec B, this can be done). Then we write ¢’ = %, where h € A,n € N.

DSpeCB(g):DSpecAf(g/) = SpeC(Af)g’ = Spec Afha

where “=" holds on the “set” level. Thus Dgc. p(g) is open in Spec B.

Remark 2.17. As for intersections of the form UNSpec A, where U 1is
an arbitrary open set, the result is easier(since openness is “weaker”):

U N Spec A is covered by open { Dgpec A(f)}-

Proposition 2.18 (closed points). Let X be a scheme which is of finite
type over a field k, then the set of closed points is dense in X.



Accoding to the condition, we have a finite cover {U;} of X (Speck is a
singleton), where U; = Spec A; O]gn X, each A; is a f.g. k-algebra.

Only need to prove that, VU = Spec B OCen X, it contains a closed
point of X. Let p be a closed point in U, and consider U; > p. Using
2.16, take a principle open set p € D(f) # @) in U; N U. The inclusion

i D(f) — U; induces i : A; — (A;) s between Jacobson rings, so

p = i(p) is closed in U;. Thus p is closed in X. The existence of such

p € U follows the existence of maximal ideals(reduce to affine case).

Remark 2.19. |2.18 fails generally, e.g. |(1)X = {o,e}.

problem 3.3 & 3.13

Definition 2.20 (open & closed immersions). Let f : X — Y be a

morphism of schemes, f is called a

I
(1) open immersion, if (X,Ox) = (Z,0y), for some open subscheme
(2,07) of Y

f
(2) closed immersion, if sp(X) =

surjective;

sp(Z) € f7 : Oy — f.Ox is

(3) immersion, if f can be factorized as hog: X — U — Y, where
g: X — U is a closed imm. & h:U —Y is an open imm..

(4) 2 closed imm.’s f1 : X1 = Y, fo : Xo = Y are equivalent if 3 an

tsom. g: X1 — Xo s.t. the following diagram commutes.

X1—>Y

l/

The following proposition characterizes closed immersions in affine

case.



Proposition 2.21. Let A be a ring, X be a scheme. X — Spec A is

a closed imm. <= (X,0x) = (Spec A/a, Ogpec a) for some ideal a
of A.

Definition 2.22 (fiber product & fiber).

(1) Let X, Y be schemes over S, the fiber product X xg'Y is defined
by the following diagram of morphisms:

Y ——— S

(2) the fiber of f : X =Y aty is defined by X, = X Xy Speck(y)

X Xy Speck(y) P x

S

Speck(y) —— Y

where “— 7 exists in the sense of |2.11.

2.3 Properties of schemes & morphisms II
2.4 Quasi-coherent sheaves

2.5 Projective sheaves



A Category theory
A.1 colimit & limit

Definition A.1 (direct system). Let I be a directed set, a direct system
{Xi, fij} over I consists of a family of objects {X;}icr & morphisms
fij + Xi = Xj s.t.
(1) fii = idx;, Vi
(2) fir = fijro fij; Vi< j < k.

“colimit” has many names, including “direct limit”, “inductive limit”.

Definition A.2 (colimit). Let {X;, f;;} be a direct system, then colimit
liﬂXi s defined by the following diagram.

X; 1y > Xj

iy X

Y
Definition A.3 (inverse system). Let I be a directed set, a inverse
system {X;,g;;} over I consists of a family of objects {X;}icr €
morphisms g;; : X; — X; s.t.

(1) gii = idy,, Vi;
(2) gir. = gij © 9k, Vi < j < k.
“limit” has many names, including “inverse limit”, “projective limit”.

Definition A.4 (limit). Let {X;, g;;} be an inverse system, then limit
@Xi s defined by the following diagram.
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Y

jm X

N

Example A.5 (colimit & limit).

(1) Let I be equiped with the discrete order(i < j <= i =j), {X;}
be a family of objects, then

(a) @Xi =[] X, it’s called the sum or coproduct;
(b) @Xi =[] X, it’s called the product.
(2) Let I =1,

(a) the colimit coincides with the initial object;

(b) the limit coincides with the terminal object.
(3) In the category of R-algebras, A][ B =A®p B;
(4) Let I = {a,b,c}, where a < b,c, {X;} be a family of objects, then
lim X; = X, x v, Xc

Proposition A.6 (with adjoint functors). Let C,D be 2 categories,
F. G be a pair of adjoint functors, i.e.

(1) ¢ = D; (2) Home (G(~), %) = Homp(—, F(x)).
Let I be a directed set,
(1) {Yi} € D be a direct system, then G(lim Y;) = lig G(Y;);

(2) {X;} C C be an inverse system, then F(lér_n X;) = QI_HF(XZ)
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B Commutative algebra

B.1 Valuation rings

Definition B.1 (valuation rings). Let k be a field, A be a subring(thus

a domain) of k. We say A is a valuation ring of k if Va # 0 € k,
either x € A 07’% € k.

Proposition B.2 (properties of v.r.s). Let A be a v.r. of k.

(1) A is a local ring, and my = {x € A|x is not invertible} = {x #
0eAll¢ Ayu{o};

(2) A is integrally closed in k;

(3) if B is a ring s.t. A C B C k, the B is also a v.r. of k. Moreover,
(a) mp C A;
(b) mp is a prime ideal of A;
(¢c) B = Anyg, i.e. B is a local ring of A

(4) V2 ideals a,b of A, either a C b or a D b. Moreover, if any

subring B of k with this compariable properties, must be a v.r..
Now we are going to construct v.r’s of a field k.
Procedure B.3. Fix a field k and an algebraically closed filed €2.
1S ={(Af)|ACE, f: A2 0
2. define a partial order on Xi:
(A, f) <(B,g) <= AC Blg|a=/,
then 3 has at least one maximal element(Zorn’s lemma);
3. let (B, g) be a mazimal element of 3, then

(a) (B,g) is a local ring € mp = ker g;
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(b) (B,g) is a v.r. of k.

Corollary B.4. Let A be a subring of k, then int.cl A = NB, where
the intersection is taken over {B|A C B C k& B is a v.r. of k}.

« Obviously int.cl A C NB;

« Conversely, if x € int.clA but x ¢ A, let B = A[%], then % is not
invertible in B. Let m be a maximal ideal of B s.t. % € m, and let
Q) = alg.cl B/m. The quotient gives a map f : B — €. From B.3,
(B, f) can be extended to some valuation ring (C, g). But f(%) =0,
thus % EkerC,iex ¢ C.

There’s another construction which happens to be equivalent to [B.3.

Procedure B.5. Fiz a field k.
1. X ={(A,m)| A Ck is a local ring with maximal ideal m};
2. define a partial order(called dominance) on 3:
(A,m) < (B,n) < AC B&m Cn,
then X has at least one maximal element,
3. (A,m) is a maximal element of > <= A is a v.r. of k.

Proposition B.6. Let A C B be 2 domains, B f.g. over A. Vx #
0€e B,3u#0¢€ A st any f: A— Q =algcl, f(u) # 0 can be
extended to g : B — Q with g(v) # 0.

Using B.6, we can prove one form of Hilbert’s Nullstellensatz.

Corollary B.7. Let k be a field and B a f.g. k-algebra. If B is a
field, the B/k is a finite algebraic extension.
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Take A =k,v =1, = alg.cl k, then we get some g : B — {2, which is

non-trivial thus injective.

Ezplanation: Consider only the case when B = k[z]|. Take some £ #

0 € Q =alg.clk, we get a homomorphism by sending z to .

Finally, we explore the relartion between v.r’s & valuations of a field.

Definition B.8 (valuations). Let k be a field, G be a totally ordered

abelian group. A wvaluation of k with values in G is a mapping v :
k* — G s.t.

(1) v(zy) = v(z)v(y);
(2) v(x +y) = minf{v(z),v(y)}, if = +y # 0.
Procedure B.9.
1. From a v.r A of k to a valuation
(a) U = {units of A},G = k*/U;
(b) define a partial order on G:
f <l = Zea

then G becomes a totally ordered group, morecover, the

quotient v : k — G is a valuation with values in G.
2. From a valuation v : k* — G of k to a v.r.
(a) A={x € k*|v(z) >0} U{0};
(b) A is a v.r. of k, which is called the v.r. of v.

B.2 Jacobson rings

Definition B.10 (Jacobson rings). We say a ring A is a Jacobson

ring if Vp € Spec A,p = Nm, where the intersection is taken over
{m € Spm |p C m}.
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Remark B.11. In non-commatative cases, Jacobson rings are defined

via primitive ideals.

Example B.12 (Jacobson rings). The following rings are Jacobson.

(1) A field k;

(2) A polynomial ring kl[zy, -, xn);

(3) A p.i.d. A with Jac(A) = 0;

(4) A ring of Krull dimension 0, e.g. a ring with only one prime ideal.
Here’s an interesting example.

Example B.13 (*Jaoobson yet not noetherian). Let k be a field, R =
klzy, 29, ]/(x3,25,++). The only prime ideal of R is (x1,29, ),
which is not f.g..

Proposition B.14 (properties of Jacobson rings).

(1) A ring A is Jacobson <= Alx| is Jacobson([9]P.18);

(2) As a result of [(1), a f.g. algebra over a Jacobson ring is also

Jacobson,

(3) Let A, B be Jacobson, f : A — B, then f~1(m) is a mazimal ideal
of A,¥Y mazximal ideal m of B;

(4) As a result of |(3), f# . Spec B — Spec A maps closed points in
Spec B to closed points in Spec A.

B.3 Nakayama’s lemma

Theorem B.15 (Nakayama’s lemma). Let M be a f.g. A-module, a be
an ideal. If aM = M, then dz € A s.t.

(1) x =1 mod a;
(2) M = 0.
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Corollary B.16. Let M be a f.g A-module, (|4]P.556)

(1) ifu: M homo, nr s surjective, then u is bijective;

(2) if A is local with wm, then a subset {my,--- ,m,} generates M <=
{my, -+ ,m,} generates M /mM over A/m.

(1) Consider M as A[x]-module, where z - m = u(m)([10]P.9);

(2) “=" is obvious. As for “<” let N = (x1,---,2zy), then N —
M — M /mM is exact, i.e. M = N +mM.

Remark B.17. Essentially, |B.15 generalizes the existence of annihi-

lating polynomial in linear algebra. Thus the idea in |(1} is natural.

C Sheaves
We consider only sheaves of Abelian groups, thus rings & modules
are treated as special cases.

Definition C.1 (presheaves & sections & morphisms). Let X be a topo.

space,
(1) a presheaf F on X is a contra. functor from Open(X) — Ab;

(2) a morphism between 2 presheaves F,G is a natural transformation

from F — G.
Or we can adopt human’s language,
(1) a presheaf F on X consists of
(a) F(U) € Ab,VU € Open(X);
(b) restriction pyy : F(U) — F(V),¥V C U € Open(X);
s.1.
(a) F(0) = 0;
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(b) pry = id;
(c) puw = pvw °© puv-

(2) any element s € F(U) is called a section of F on U, we sometimes

write D'(U, F) for F(U);

(8) a morphism f : F — G consists of morphisms f(U) : F(U) —
G(U),VYU € Open(X), s.t. the following diagram commutes VV C
U € Open(X)

Fu) L% gan

PUV\L lpUV

Fv) 2 6()

Definition C.2 (sheaves). Let X be a topo. space. A sheaf F on X
is a presheaf, s.t. if U € Open(X),{V;} C Open(X) is a cover of U,

(1) (factorizing)if s € F(U) s.t. sy, = 0,Vi, then s =0;

(2) (glueing)if si € F(Vi) s.t. silvinv, = sjlviny;, Vi, J, then s €
F(U) s.t. sly, = s, Vi.

Definition C.3 (stalks & germs). Let X be a topo. space p € X, F
be a presheaf on X.

(1) We define the stalk F,, at p by
fp - QI(U)a
open
where the colimit is taken over {U C X|pe U},

(2) Any element s, € F) is called a germ of F at p.

Remark C.4. To be more concrete, F, = {(U,s)|p e U O]gn X,s €
F(U)}/ ~, where (U, s) ~ (V,t) <— W CX st

()peW cCcUnV;
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(2) slw = tlw.
Thus any germ s, comes from some sections.

Proposition C.5 (sheaves are determined by stalks). Let X be a topo.
space, F,G be 2 sheaves on X, o : F — G be a morphism. Then

(1) ¢ is injective <= @p : Fp — Gy is injective Vp € X;

(2) ¢ is surjective <= @y : Fp — Gy is surjective Vp € X;

(3) Thus ¢ is an isom. <= @p: Fp — Gy is an isom. Vp € X;
Remark C.6. This result applies only to sheaves.

Procedure C.7 (sheafification). Let X be a topo. space, F be a
presheaf on X.
1w X, define F{(U) = {s: U — Uper Fp | s satisfies }
(a) Vp € U,s(p) € Fp
(b)VpeUdpeV CcUteF(V) st VgeV,t,=s(q).
2. properties of F+:

(a) F* is a sheaf;
(b) 3 a natural morphism 0 : F — F*, which satisfies the

following universal property.

F—4 5 F

l )\/// 3!

G (sheaf)
Moreover, the pair (F 1,0) is unqiue in this sense.
(¢c) Fp= Fh¥pe X.

Definition C.8 (kernel, image & cokernel). Let X be a topo. space,
F,G be 2 sheaves on X, ¢ : F — G be a morphism.
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(1) ket p(U7) := ker(p(D));
(2) pim p(U) := im(p(U));

(3) p.coker p(U) := p.coker(p(U))

In general, p.im o, p.coker ¢ fail to be sheaves, so we define
(1) im = (p.imp)*;

(2) coker p = (p.coker @)t

Definition C.9 (injective & surjective morphisms, exact sequences). Let

X be a topo. space,

. -1 i
(1) a sequence --- — Fi=t L Fi 25 Fitl 5oL of sheaves on X
1

is called exact if im '~ = ker ¢, Vi;

(2) ¢ : F — G is called injective if 0 — F 2 G is exact;

(8) o F — G is called surjective if F 2y G — 0 is exact.
Proposition C.10 (exactness on the stalk level). Let X be a topo.

. -1 g
space, a sequence --- — Fi1 LANENGY & B AN SR BN of sheaves

on X is exact +— ... — Fio1 2 ot TP il oG exact
Vp e X.

Proposition C.11 (left-exactness of restriction). Let X be a topo.
open

space, U C X. Then the functor I'(U,*) is left exact, i.e. if

0= F & FY% 7 is an exact sequence of sheaves on X, then

0— F(U) KLUIN FU) UGN F'(U) is an exact sequence in Ab.

Remark C.12. The problem occurs since (im)(U) # im(p(U)) =
(p-im)(U) in general. Roughly speaking, the left-exactness comes
from |(3) of the following proposition, since ker(y)(U)) = (ker)(U) =
(im)(U) = F(U) = (p.im ¢)(U) = im(p(U)).
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Proposition C.13 (on injectivity). Let X be a topo. space, F,G be 2
presheaves on X, ¢ : F — G be a morphism.
(1) If (U) : F(U) = G(U) is injective YU c (X), then the induced

morphism o* : F¥ — Gt is injective;

F— Ft
‘91 /

(2) As a result of (1}, if ¢ is a morphism of sheaves, then imy is
naturally a subsheaf of G. Moreover, im ¢ = F [ ker .

FU) —— p.impU) —— G(U)

(3) As a result of |(2), if 0 » F 55 G is exact, then F = im .

Definition C.14 (direct image & inverse image). Let f : X — Y be a
conti. map of topo. spaces, F,G are sheaves on X,Y resp.,
(1) (fF) (V) := F(f~1(V)), this gives the direct image f+F on'Y;

open

2) (f~16)(U) = lim G(V'), where the colimit is taken over {V C
Y | f(U) C VY, this gives the inverse image =G on X.

Remark C.15.
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(1) Calculating f«F is always a crucial problem in algebraic geometry;
(2) £71G is difficult to define, but easy to use.
Proposition C.16 (f~1(=)& f«(x) are adjoint). Let f : X =Y be a

conti. map of topo. spaces, F,G are sheaves on X,Y resp.,
Homy (f~'G, F) = Homy (G, f+.F).
More precisely, we have 2 natural maps f =L fo F — F &G — fof ~1G.

Let’s examine some examples.
Example C.17 (sheaves). Let X be a topo. space, A be an ab. grp..

(1) (constant sheaf) Equip A with the disc. topo.. Define A(U) =
{f:U contl, A} VU ' X, then A(U) = A if U is connected.
AifpelU

0, otherwise '

(2) (skyscraper sheaf) For p € X, define i,(A)(U) =

A if g€ {p}
Note that (ip(A))g = a € v} . Also, let A be the const.
P ! 0, otherwise

sheaf on {p}, 7 : {p} = X, then iy(A) = j+A.
Definition C.18 (flasque sheaves). Let X be a topo. space, F be a
sheaf on X. F is called flasque if pyy : F(U) — F(V) is surjective
VvV C U € Open(X).

Proposition C.19 (properties of flasque sheaves).

(1) Let X be a topo. space, 0 — F' 2 F £> F" — 0 be an ezact

sequence of sheaves on X
(a) if F' is flasque, then T'(U,%) is eract, i.e. 0 — F(U) —
F(U) — F"(U) — 0 is an exact sequence in Ab;
(b) if F'&F are flasque, then F" is flasque.
(2) Let f: X — Y be a conti. map of topo. spaces, F be a flasque
sheaf on X, then f«JF is a flasque sheaf on Y .
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(3) Let X be a topo. space, F be a sheaf on X. Define FT(U) = {s :

(a) F1 is a flasque sheaf:
(b) 3 a natural injective morphism F — F7.

F—F!

[

G(fls. sh.)

0-extension of sheaves.
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