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1 数域

定义.（数域）集合 F ⊆ C，如果它满足

(1) 0, 1 ∈ F；

(2) F 对于加、减、乘除封闭

则称 F 是一个数域

常见的例子：Q,R,C,Q[
√
2] = {a+ b

√
2|a, b ∈ Q}，其中 Q 是最小的数域。

高等代数中的许多问题都和数域的性质有关，例如多项式理论，Q,R,C 上的因式分解差别很大。

2 线性方程组的求解

Gauss 消元法/矩阵消元法，它们的本质都是通过初等行变换得到最简阶梯形，然后读出解

例 1 在数域 F 上求解线性方程组

{
x1 + 2x2 + 3x3 = 1

2x1 + 2x2 + 5x3 = 2

定理 2.1 (解存在的条件，结构定理) 将 n 元方程组的增广矩阵化为最简阶梯形，记系数矩阵非零行个数为 r，

增广矩阵非零行个数为 r̃

(1) 如果 r < r̃，则有矛盾方程，此时方程组无解；

(2) 如果 r = r̃，则方程组有解，而且通解中有 n− r 个独立取值的参数

推论 2.2 齐次线性方程组总是有解，而且

(1) 如果 r = n，方程组只有零解；

(2) 如果 r < n，方程组有无穷多组解

推论 2.3 如果齐次线性方程组的未知数个数多于方程个数，那么一定有无穷组解

例 2 齐次线性方程组 AX = 0, A ∈ Mm×n(F ) 有非零解的充要条件是

例 3 数域 F 上的线性方程组


λx1 + x2 + 3x3 = 1

x1 + λx2 + 3x3 = λ

x1 + x2 + λx3 = λ2

有解的充分必要条件是

定理 2.4 数域 F 上的 n 元齐次线性方程组 AX = 0，它的解集构成一个线性空间，一组基被称为方程组的基础

解系，而且满足维数公式

dim VA = n− rank A

定理 2.5 数域 F 上的 n 元非齐次线性方程组 AX = B，设 γ 是一个特解，导出组 AX = 0 的一个基础解系是

X1, · · · , Xn−r，则它的通解为

X = γ + k1X1 + · · ·+ kn−rXn−r



理
科
高
等
代
数

理科高等代数 4 / 43

例 4 设 A ∈ Mn×(n+1)(F ), rank A = n，且 A 每一行的元素之和为 0，求证 A 的任意 n 阶子式不为 0

例 5 设 A ∈ Mm×n(F )，则非齐次线性方程组 AX = B 至多有 个线性无关的解

例 6 设 α1, α2 是含有三个未知数的线性方程组 AX = β 的两个不同的解，且 rank A = 2，则 AX = B 的通解

为

(A) α1 + kα2；

(B) 1

2
(α1 + α2) + k(α1 − α2)；

(C) 2α1 + k(α1 − α2)；

(D) k1α2 + k2(α1 − α2)

例 7 线性方程组 AX = B 的系数矩阵 A ∈ M4×5(R)，且 A 的行向量组线性无关，则下列命题错误的是

(A) 齐次线性方程组 ATY = 0 只有零解；

(B) 齐次线性方程组 ATAX = 0 必有非零解；

(C) ∀B ∈ R4，方程组 AX = B 必有无穷多解；

(D) ∀B ∈ R5，方程组 ATX = B 必有唯一解

例 8 考虑数域 F 上的非齐次线性方程组 AX = B，其中 A ∈ M4×6(F ), B ̸= 0 ∈ F 4。已知 rank A = 3，则该线

性方程组的解集生成的子空间维数为

例 9 设 α1, α2, α3 是方程组 AX = 0 的基础解系，则下列向量组也可作为 AX = 0 基础解系的是

(A) α1 + α2, α2 + α3, α3 + α1；

(B) α1 + α2, α2 + α3, α1 + 2α2 + α3；

(C) α1, α1 + α2, α1 − α2；

(D) α1 + α2, α1 − α2, α1

例 10 设 A ∈ Mm×n(R)，证明 rank A = rank ATA

3 线性空间的概念

定义.（线性空间）V 是一个非空集合，F 是一个数域，如果在 V 中定义加法和数乘 (+, ·)，满足以下运算律

(1) ∀α, β, γ ∈ V (α+ β) + γ = α+ (β + γ)；

(2) 存在零元 0，∀α ∈ V, α+ 0 = α；

(3) ∀α ∈ V, ∃β ∈ V, α+ β = 0；

(4) ∀α, β ∈ V, α+ β = β + α；

(5) ∀k, l ∈ F, α ∈ V, k(lα) = (kl)α；

(6) ∀k, l ∈ F, α ∈ V, (k + l)α = kα+ lα；

(7) ∀k ∈ F, α, β ∈ V, k(α+ β) = kα+ kβ；

(8) ∀α ∈ V, 1α = α

则称 V 是 F 上的线性空间
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定义.（子空间）设W 是 (V,+, ·)的非空子集，若 (W,+, ·)是线性空间，则称W 是 V 的子空间，记作W ⩽ V

以下总用 V 表示某个数域 F 上的线性空间，它的元素被称为向量

常见的线性空间：

(1) Fn；

(2) Mm×n(F )；

(3) F [x]；

(4) F [x]n；

(5) C(R)；

(6) Cb(R)；

(7) Ck(R)；

(8) R(R)

例 11 设集合 W = {(y1, y2, y3) ∈ R3|y1 + y2 + y3 = a}，且 W 继承了 R3 中的加法和数乘，则下列说法中一定成

立的是

(A) 对任意 a，W 都是线性空间；

(B) 对任意 a，W 都不是线性空间；

(C) 只有当 a = 0 时，W 才是线性空间；

(D) 只有当 a ̸= 0 时，W 才是线性空间

4 线性组合与相关性

定义.（线性等价）设 S, T ⊆ V，如果它们互为线性组合，则称它们线性等价，记作 S ∼= T

定义.（线性相关性）设向量组 {α1, · · · , αk}，如果存在不全为零的数 λ1, · · · , λk，使得 λ1α1 + · · · + λkαk = 0，

则称这一向量组线性相关，否则称线性无关

例 12 设 n 元非齐次线性方程组 AX = B 的系数矩阵的秩为 r，且解集非空，则其解集中至多有 个线性无

关的向量

例 13 下列向量组中线性无关的是

(A) (1, 2, 3, 4)T , (2, 3, 4, 5)T , (0, 0, 0, 0)T , (1, 2, 3, 4)T；

(B) (1, 2,−1)T , (3, 5, 6)T , (0, 7, 9)T , (1, 0, 2)T；

(C) (a, 1, 2, 3)T , (b, 1, 2, 3)T , (c, 3, 4, 5)T , (d, 0, 0, 0)T；

(D) (a, 1, b, 0, 0), (c, 0, d, 6, 0), (a, 0, c, 5, 6)；

例 14 在 V = {(a, b)|a, b ∈ R} 中，定义加法和数乘分别为

(a, b)⊕ (c, d) = (a+ c, b+ d+ ac)

k ⊗ (a, b) =

(
ka, kb+

2

3
k(k − 1)a2

)
, k ∈ R
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则 V 是 R 上的线性空间。设 p ∈ R，若 (1, 1) 和 (2, p) 线性相关，则 p =

例 15 设非零矩阵 A,B 满足 AB = 0，则必有

(A) A 的列向量组线性相关，B 的行向量组线性相关；

(B) A 的列向量组线性相关，B 的列向量组线性相关；

(C) A 的行向量组线性相关，B 的行向量组线性相关；

(D) A 的行向量组线性相关，B 的列向量组线性相关

例 16 设 a1, · · · , an ∈ R 而且互不相同，证明 {ea1x, · · · , eanx} 是 C(R) 中的线性无关向量组

例 17 设 {α1, · · · , αp} ⊆ Rm 线性无关，β ̸= 0 ∈ Rn，证明 {α1β
T , · · · , αpβ

T } ⊆ Mm×n(R) 同样线性无关

5 向量组的秩

定义.（极大线性无关组）设 S ⊆ V，如果 M ⊆ S 线性无关，而且添加 S 中任何向量就线性相关，则称 M 是

S 的一个极大线性无关组

定义.（等价定义）设 S ⊆ V，如果 M ⊆ S 线性无关，而且可以线性表出 S 中的所有向量，则称 M 是 S 的一

个极大线性无关组

定理 5.1 设 S1, S2 ⊆ V，而且 #S1 < #S2，如果 S2 是 S1 的线性组合，则 S2 线性相关

定义.（向量组的秩）如果向量组 S ⊆ V 的一个极大线性无关组含有向量的个数为 r，则称 S 的秩为 r，记作

rank A = r

例 18 设向量组 α1, · · · , α5 的秩为 4，那么从该向量组中任取 3 个向量组成的向量组的秩最小可能为

例 19 以下命题中正确的有 个

(1) 若向量组 α1, · · · , αr 与向量组 β1, · · · , βs 等价，则它们的秩相等；

(2) 若向量组 α1, · · · , αr 与向量组 β1, · · · , βs 的秩相等，则它们等价；

(3) 若向量组 α1, · · · , αr 与向量组 β1, · · · , βs 的秩相等，且前者可由后者线性表出则它们等价；

(4) 若向量组 α1, · · · , αr 与向量组 β1, · · · , βs 不等价，则它们的秩不相等

(A) 0； (B) 1； (C) 2； (D) 3

例 20 设 A ∈ Mn(F ), ∃ k ∈ N∗, rank Ak = rank Ak+1，证明存在 B ∈ Mn(F )，使得 Ak = BAk+1

例 21 设 A ∈ Mn(F ), ∃ k ∈ N∗, rank Ak = rank Ak+1，证明存在 B ∈ Mn(F )，使得 Ak = Ak+1B
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6 线性空间的基

定义.（线性空间的基和维数）如果存在线性无关向量组 W ⊆ V，使得 W 可以线性表出 V 中任意向量，则称

W 是 V 的一组基，称 W 中元素的个数 #W 为 V 的维数，记作 dim V

例 22 设 V 是 R 上所有 4 阶反对称矩阵构成的集合，若将 V 看作 R4×4 的子空间，则 dim V =

例 23 在数域 F 上，设 E 为 2 阶单位阵，I =

(
1

−1

)
, J =

(
−1

1

)
,K =

(
−1

−1

)
(1) 试证明：E, I, J,K 是 Mn(F ) 的一组基；

(2) 求 I2, JK 在这组基下的坐标

例 24 给定数域 F 上两个 n 元齐次线性方程组 AX = 0, BY = 0，给出它们有相同解空间的充要条件

7 同态与同构

定义.（线性同态）设 V1, V2 是 F 上的线性空间，如果映射 φ : V1 → V2 满足

(1) φ(α+ β) = φ(α) + φ(β), ∀α, β ∈ V1；

(2) φ(λα) = λφ(α), ∀λ ∈ F, α ∈ V1

则称 φ 是从 V1 到 V2 的同态映射

定义.（线性同构）设 V1, V2 是 F 上的线性空间，如果映射 φ : V1 → V2 满足

(1) φ 是同态映射；

(2) φ 是一一映射

则称 φ 是从 V1 到 V2 的同构映射，并且称 V1 和 V2 同构，记作 V1
∼= V2

定理 7.1

(1) 如果 φ : V1 → V2 是线性同态，则 S ⊆ V 线性相关 ⇒ φ(S) 线性相关；

(2) 如果 φ : V1 → V2 是线性同构，则 S ⊆ V 线性相关 ⇔ φ(S) 线性相关

定理 7.2 F 上任意一个 n 维线性空间都和 Fn 同构

例 25 设 X1, · · · , Xs 为 n 维列向量，A ∈ Mm×n(F )，则下列说法正确的是

(A) 若 X1, · · · , Xs 线性相关，则 AX1, · · · , AXs 线性相关；

(B) 若 X1, · · · , Xs 线性相关，则 AX1, · · · , AXs 线性无关；

(C) 若 X1, · · · , Xs 线性无关，则 AX1, · · · , AXs 线性相关；
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(D) 若 X1, · · · , Xs 线性无关，则 AX1, · · · , AXs 线性无关

例 26 任取 c ∈ R

(1) 证明在 R[x]n 中，{1, x− c, · · · , (x− c)n−1} 构成一组基；

(2) 求 f(x) = a0 + a1x+ · · ·+ an−1x
n−1 在这组基下的坐标

例 27 设 {α1, · · · , αm} 是 Fm 的一组基，{β1, · · · , βn} 是 Fn 的一组基，证明 {αiβ
T
j |1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n} 是

Mm×n(F ) 的一组基

8 子空间的交与和

定义.（两个子空间的交与和）设 W1,W2 ⊆ V 是子空间

(1) 称 W1 ∩W2 = {α ∈ V |α ∈ W1,W2} 为它们的交；

(2) 称 W1 +W2 = {α+ β ∈ V |α ∈ W1, β ∈ W2} 为它们的和

定理 8.1 W1 ∩W2,W1 +W2 都是线性空间，而且

(1) W1 ∩W2 是含于 W1,W2 的最大的线性空间；

(2) W1 +W2 是包含 W1,W2 的最小的线性空间

从两个子空间的交与和可以（归纳地）定义更多空间的交与和，以上定理依然成立

定理 8.2 设 W1,W2 ⊆ V 是子空间，则有

dim(W1 +W2) + dim(W1 ∩W2) = dim W1 + dim W2

例 28 给定 F 4 的子空间 W1 的基 {α1, α2} 和子空间 W2 的基 {β1, β2}，其中

α1 = (1, 1, 0, 0), α2 = (0, 1, 1, 0), β1 = (1, 2, 3, 4), β2 = (0, 1, 2, 2)

分别求 W1 +W2,W1 ∩W2 的维数并各求出一组基

定义.（两个子空间的直和）设 W1,W2 ⊆ V 是子空间，若在 W = W1 +W2 中，每个向量的分解式

w = w1 + w2, w1 ∈ W1, w2 ∈ W2

唯一，则称 W 是它们的直和，记作 W = W1 ⊕W2

定理 8.3 设 W1,W2 ⊆ V 是子空间，W = W1 +W2，则以下条件等价

(1) W 是直和；
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(2) W 中每个向量的分解式唯一；

(3) W 中零向量的分解式唯一；

(4) W1 ∩W2 = {0}；

(5) dim W = dim W1 + dim W2；

(6) 取 W1,W2 的极大线性无关组 S, T，则 S ∪ T 构成 W 的一个极大线性无关组

例 29 设 A ∈ Mn(F ), A2 = −A，设 V1 = {X ∈ Fn|AX = 0}, V2 = {X ∈ Fn|(A+ I)X = 0}

(1) 证明 V1 ⊕ V2 = Fn；

(2) 证明 rank A+ rank(A+ I) = n

例 30 设 A ∈ Mn(F ), rank A = n− 1，记 A 的伴随矩阵为 A∗，记齐次线性方程组 AX = 0, A∗X = 0 的解空间

分别为 VA, VA∗，试证明 Fn = VA ⊕ VA∗ ⇐⇒ tr A∗ ̸= 0

9 行列式

需要知道排序、逆序的概念，会计算逆序数，以及根据定义求行列式

定理 9.1 设 A ∈ Mm(F ), B ∈ Mn(F )，则

∣∣∣∣∣ A C

0 B

∣∣∣∣∣ = |A||B|

例 31 6 阶行列式 |aij | 中项 a23a42a31a56a14a65 前的符号为

例 32 计算行列式

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · n− 1

n 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
定理 9.2

(1) |A| = |AT |；

(2) 如果行列式的某一行（列）有公因数 k，则 k 可以提到行列式外；

(3) 互换行列式的两行（列），行列式的值改变符号；

(4) 如果行列式中两行（列）对应元素成比例，那么行列式的值为 0；

(5) 如果行列式某行（列）元素可以写成两数之和，那么行列式可以拆分为两个行列式之和；

(6) 将某一行（列）的元素同时乘 k 并加到另一行（列），行列式的值不改变

例 33（判断）奇数阶反对称矩阵不可逆；
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例 34（判断）n(n ⩾ 2) 阶行列式中若所有元素都是 ±1，那么行列式值不可能取 ±1

例 35 四阶行列式

∣∣∣∣∣∣∣∣∣
a1 0 0 b1

0 a2 b2 0

0 b3 a3 0

b4 0 0 a4

∣∣∣∣∣∣∣∣∣ 的值为

(A) a1a2a3a4 − b1b2b3b4；

(B) a1a2a3a4 + b1b2b3b4；

(C) (a1a2 − b1b2)(a3a4 − b3b4)；

(D) (a2a3 − b2b3)(a1a4 − b1b4)

例 36 设 A ∈ Mn(F )，并且 A
(2,3)−−−→ B

−3(4)+(1)−−−−−−→ C
1
2 (3)−−−→


2 1 0 0

4 3 0 0

−5 −2 4 5

2 1 1 2

，则 |A| =

(A) 3； (B) −3； (C) 12； (D) −12

例 37 计算 n 阶行列式

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 2

1 3
...

. . .

1 n

∣∣∣∣∣∣∣∣∣∣∣∣∣
例 38 计算 n 阶行列式的值

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x a a · · · a

−a x a · · · a

−a −a x · · · a
...

...
...

. . .
...

−a −a −a · · · x

∣∣∣∣∣∣∣∣∣∣∣∣∣
10 展开定理

定理 10.1 (1) 行列式的值等于它的任意一行（列）各元素与其对应的代数余子式乘积之和；

(2) 行列式中某一行（列）与另一行（列）对应元素的代数余子式乘积之和为 0

以上两条即
n∑

i=k

aikAjk =

{
|A|, i = j

0, i ̸= j
,

n∑
i=k

akiAkj =

{
|A|, i = j

0, i ̸= j

例 39 设 D =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1,n−1 a1n

a21 a22 · · · a2,n−1 0

a31 a32 · · · 0 0
...

...
. . .

...
...

an1 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
，用 Aij 表示 aij 的代数余子式，则

n∑
k=1

kAk1 =
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例 40 求行列式 Dn 的值，其中

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 1

1 −2 1

1 −2
. . .

. . .
. . . 1

1 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣
11 Cramer 法则

定理 11.1 （Cramer 法则）设数域 F 上线性方程组 AX = B 满足 A ∈ Mn(F ) 而且 D = |A| ̸= 0，则这一方程

组有唯一解，并且可以写成

x1 =
D1

D
,x2 =

D2

D
, · · · , xn =

Dn

D
,

其中 Di 是将 D 的第 i 列替换为 B 所得的行列式

推论 11.2 设 A ∈ Mn(F )，则下列论断等价

(1) |A| ̸= 0；

(2) A 的列向量组线性无关；

(3) A 的行向量组线性无关；

(4) rank A = n

例 41 设矩阵 A ∈ Mm×n(F ), B ∈ Mn×m(F )，则

(A) 当 m > n 时，必有行列式 |AB| ̸= 0；

(B) 当 m > n 时，必有行列式 |AB| = 0；

(C) 当 m < n 时，必有行列式 |AB| ̸= 0；

(D) 当 m < n 时，必有行列式 |AB| = 0

例 42 设 A ∈ Mm×n(F ), B ∈ Mn×m(F ),m > n，则下列结论正确的是

(A) |AB| > 0；

(B) |AB| = 0；

(C) |AB| < 0；

(D) |AB| 不存在；

例 43 是否存在区间 [2022, 2023] 上的四个实连续函数 aij(t)，同时满足

(1) 对于任意 t ∈ [2022, 2023]，A(t) =

(
a11(t) a12(t)

a21(t) a22(t)

)
可逆；

(2) A(2022) =

(
sin 2022 cos 2022

− cos 2022 sin 2022

)
, A(2023) =

(
− sin 2023 cos 2023
cos 2023 sin 2023

)

例 44 设 A ∈ Mn(F ), |A| = d ̸= 0，并且每行元素之和为 c，试计算所有代数余子式之和
n∑

i,j=1

Aij
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12 数域上的矩阵

熟悉矩阵的加法、数乘、乘法运算，看清矩阵的形状

定理 12.1 设 A,B ∈ Mn(F )，则 |AB| = |A||B|

例 45 回答下列问题

(1) 是否存在实二阶方阵 A，使得 A2 = −I?

(2) 是否存在 5 阶方阵 A，使得 A3 = 0, A2 ̸= 0？

(3) 设 A 为方阵，若存在 k ∈ N∗，使得 Ak = 0，则称 A 为幂零方阵。两个同阶幂零方阵的乘积是否是幂

零方阵？

学会从线性组合的角度理解矩阵乘法

例 46 设 A ∈ Mn(F ), ∃ k ∈ N∗, rank Ak = rank Ak+1，证明存在 B ∈ Mn(F )，使得 Ak = BAk+1

例 47 设 A ∈ Mn(F ), ∃ k ∈ N∗, rank Ak = rank Ak+1，证明存在 B ∈ Mn(F )，使得 Ak = Ak+1B

熟悉分块矩阵的运算，注意分块要保证乘法的合理性

例 48 设 A ∈ Mm×n(F ), B ∈ Mp×q(F ),M =

(
A C

O B

)
，则下列说法正确的有

(1) 如果 C = 0，则 rank M = rank A+ rank B；

(2) 对于一般的矩阵 C，有 rank M = rank A+ rank B；

(3) 对于一般的矩阵 C，有 rank M ⩽ rank A+ rank B；

(4) 对于一般的矩阵 C，有 rank M ⩾ rank A+ rank B；

(A) (1)(2)； (B) (1)(3)； (C) (1)(4)； (D) (1)

例 49 设 A,B ∈ Mn(F )，证明 ∣∣∣∣∣ A B

B A

∣∣∣∣∣ = |A+B| · |A−B|

熟悉可逆矩阵的定义，掌握计算方法

定义.（逆矩阵）设 A ∈ Mn(F )，若存在 B ∈ Mn(F )，使得 AB = BA = I，则称 B 为 A 的逆矩阵，此时 A 称

为可逆矩阵

例 50（判断）若矩阵 A,B 的乘积 AB = In，那么 A,B 互为逆矩阵；

例 51 下列四个关于矩阵的逆的说法正确的有

(1) 可逆对称矩阵的逆还是对称矩阵；
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(2) 可逆上三角矩阵的逆还是上三角矩阵；

(3) 初等矩阵的逆还是初等矩阵；

(4) 反对称矩阵一定不可逆

(A) (1)(3)； (B) (1)(2)(3)； (C) (1)(3)(4)； (D) (1)(2)(3)(4)；

例 52 设 A,B,C ∈ Mn(F ), B = I +AB,C = A+ CA，则 B − C =

例 53 设矩阵 B =

 2 3 0

2 1 3

0 3 1

 , A, P 为 3 阶可逆矩阵，且 (AP )−1 = −(PB)−1，则 |A| =

例 54 设 A,B ∈ Mn(F )，而且 I −AB 可逆，证明 (I −BA)−1 = I +B(I −AB)−1A

定义.（伴随矩阵）设 A ∈ Mn(F )，则 A∗ := (Aji)

定理 12.2 A∗A = AA∗ = |A|I，并且如果 A 可逆，A−1 =
1

|A|
A∗, A∗ = |A|A−1

例 55 设 A ∈ Mn(F )，则 rank A∗ =


n, rank A = n

1, rank A = n− 1

0, rank A < n− 1

例 56 设 A,B,C ∈ Mn(F ), ABC = I，则 C∗B∗A∗ =

例 57 设 A =


1 a a a

a 1 a a

a a 1 a

a a a 1

，若 rank A∗ = 1，则 a =

(A) 1 或 −1

3
； (B) 1； (C) −1

3
； (D) 3

例 58 设 A ∈ Mn(F ), n > 2，则 (A∗)∗ =

例 59 设 A 的伴随矩阵为 A∗ =

 2 0 2

2 2 0

0 2 2


(1) 求 A；

(2) 当 |A| < 0 时，求解矩阵方程 A−1XA = XA+ I

13 初等矩阵与矩阵变换

熟悉三类初等矩阵，掌握它们的计算，用它们来表示初等行（列）变换

熟悉矩阵的相抵标准形，掌握它的性质和计算方法

定理 13.1 设 A ∈ Mm×n(F )，则 A 可以经过有限次初等变换化为

(
Ir 0

0 0

)
，其中 r = rank A
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推论 13.2 设 A ∈ Mm×n(F )，则存在可逆矩阵 P ∈ Mm(F ), Q ∈ Mn(F )，使得 PAQ =

(
Ir 0

0 0

)
掌握分块矩阵的初等变换，用矩阵的乘法进行描述

例 60 设 A ∈ Mm×n(F ), B ∈ Mn×m(F )，证明 |Im −AB| = |In −BA|

【提示：注意到

(
Im 0

−B In

)(
Im A

0 In

)(
Im −AB 0

B In

)
=

(
Im A

0 In −BA

)
即可】

例 61 设 A ∈ M3(F )，将矩阵 A 的第一行加到第二行得到矩阵 B，再交换矩阵 B 的第二行与第三行得单位矩阵。

若记 P1 =

 1 0 0

1 1 0

0 0 1

P2 =

 1 0 0

0 0 1

0 1 0

 则矩阵 A =

(A) P−1
1 P2； (B) P1P2； (C) P1P

−1
2 ； (D) P2P

−1
1 ；

例 62 若 α = (1, 2, · · · , 2021)，则行列式 |I2021 − αTα| 的值为

例 63 用初等行变换将矩阵 A 化作相抵标准形 S，并求出使 PAQ = S 的可逆矩阵 P,Q，其中

A =

 1 0 −2 2

0 1 3 4

−1 1 4 4


例 64 设 A ∈ Mm×n(F ), rank A = r，证明存在秩为 r 的 P ∈ Mm×r(F )和秩为 r 的 Q ∈ Mr×n(F )，使得 A = PQ

14 秩的第二种定义，秩不等式

定义.（秩的子式定义）设 A ∈ Mm×n(F )，如果存在一个非零 r 阶子式，并且所有 r+ 1 阶子式（若存在）都为

零，则称 r 为 A 的秩，记作 rank A = r

定理 14.1 初等行列变换不改变矩阵的秩

熟悉通过子式定义的秩，掌握重要的秩不等式（注意使用条件）

如果时间充足，建议学会它们的证明

定理 14.2 （一些重要的秩不等式）

(1) A ∈ Mn×s(F ), B ∈ Mn×t(F )，则 max{rank A, rank B} ⩽ rank
(

A B
)
⩽ rank A+ rank B

(2) A,B ∈ Mm×n(F )，则 rank(A+B) ⩽ rank A+ rank B；

(3) A ∈ Mm×n(F ), B ∈ Mn×l(F )，则 rank AB ⩽ min{rank A, rank B}；

(4) A ∈ Mm×n(F ), B ∈ Mn×l(F )，则 rank A+ rank B ⩽ n+ rank AB

例 65 已知矩阵 A ∈ Mn×(n+1)(F ), rank A = n，且 A 每一行的元素之和为 0，求证 A 的任意 n 阶子式不为 0
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例 66（判断）存在两个 3× 3 秩为 2 的矩阵 A,B 使得 AB = 0

例 67 设 A,B ∈ Mn(F )，证明

(1) 若 AB = 0，则 rank A+ rank B ⩽ n；

(2) 若 |A+B| ̸= 0，则 rank A+ rank B ⩾ n

例 68 设 A ∈ Mn(F )，证明存在 m ∈ N∗，使得 rank Am = rank Am+1

例 69 设 A ∈ Mn(F ), A2 = −A，设 V1 = {X ∈ Fn|AX = O}, V2 = {X ∈ Fn|(A+ I)X = O}

(1) 证明 V1 ⊕ V2 = Fn；

(2) 证明 rank A+ rank(A+ I) = n

例 70 设 A ∈ Mn(F ), A2 = I，证明 rank(A+ I) + rank(A− I) = n

例 71 设 a, b, c, d ∈ C, A ∈ Mn(C), ac ̸= 0, ad ̸= bc，若 (aA+bI)(cA+dI) = 0，则 rank(aA+bI)+rank(cA+dI) = n

【提示：令 B =
2ac

bc− ad
A+

bc+ ad

bc− ad
I，则有 (B + I)(B − I) = 0，使用上一例题结果即可】

例 72 设 A ∈ Mn(F ), k ∈ N，证明 rank Ak − rank Ak+1 ⩾ rank Ak+1 − rank Ak+2

例 73 设 A ∈ Mn(F )，若存在 m ∈ N，使得 rank Am = rank Am+1，证明 ∀k ∈ N, rank Am = rank Am+k

例 74 设 A,B ∈ Mm×n(F )，证明 rank A+ rank B + rank(A+B) ⩾ rank
(

A B
)
+ rank

(
A

B

)

15 数域上的多项式

掌握基本运算，熟悉带余除法的计算

从线性空间的角度理解多项式的相等

定理 15.1 F [x] 是数域 F 上的无穷维线性空间，{1, x, · · · , xn, · · · } 构成它的一组基

推论 15.2 两个多项式相等 ⇐⇒ 相同次数项的系数相同

定理 15.3 （带余除法）设 f(x), g(x) ∈ F [x], g(x) ̸= 0，则存在唯一的 q(x), r(x) ∈ F [x]，使得

f(x) = q(x)g(x) + r(x), deg r(x) < deg g(x)

例 75 设 f(x) = q(x)g(x) + r(x), deg r(x) < deg g(x), g(x) ̸= 0, h(x) ̸= 0，则 f(x)h(x) 除以 g(x)h(x) 所得的商

为 ，余式为

例 76 设 a ̸= b，证明多项式 f(x) 除以 (x− a)(x− b) 所得的余式为
f(a)− f(b)

a− b
x+ f(a)− a

f(a)− f(b)

a− b

例 77 给定 k ∈ N, k ⩾ 2，求所有 f(x) ̸= 0 ∈ R[x]，使得 f(xk) = (f(x))k

熟悉最大公因式的定义（(f(x), g(x)) 要求首一）、计算方法（辗转相除法）

特别的，熟悉多项式互素的定义和性质
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定理 15.4 设 f(x), g(x) ∈ F [x], d(x) = (f(x), g(x))，则存在 u(x), v(x) ∈ F [x]，使得 d(x) = u(x)f(x)+v(x)g(x)

例 78（判断）设 f(x), g(x)是数域 F 上的多项式，如果存在 u(x), v(x) ∈ F [x]，使得 u(x)f(x)+ v(x)g(x) = d(x)，

则 d(x) 是 f(x), g(x) 的最大公因式；

例 79（判断）如果 f(x), g(x) 互素，那么 f(xm), g(xm) 互素，这里 m ∈ N∗；

例 80（判断）如果 f1(x), · · · , fs(x) 互素，则 f1(x), · · · , fs(x) 两两互素；

例 81 设 (f(x), g(x)) = 1，则下列论断不对的是

(A) (f(x), f(x)− g(x)) = 1；

(B) (f(x) + g(x), f(x)− g(x)) = 1；

(C) ((f(x))2, (g(x))2) = 1；

(D) (xf(x)− g(x), f(x)− g(x)) = 1；

例 82 已知 f(x) = 3x3 − 4x+ 5, g(x) = x2 − 2x− 1

(1) 求 (f(x), g(x))；

(2) 求多项式 u(x), v(x)，使得 (f(x), g(x)) = u(x)f(x) + v(x)g(x)

熟悉不可约多项式的定义（次数⩾ 1）和性质

定义. 设 f(x) ∈ F [x], deg f(x) ⩾ 1，如果 f(x) = g(x)h(x)，其中 g(x), h(x) ∈ F [x], deg g(x), deg h(x) ⩾ 1，则

称 f(x) 在数域 F 上可约，否则称 f(x) 是数域 F 上的不可约多项式

定理 15.5 （因式分解的存在和唯一性）设 f(x) ∈ F [x], deg f(x) ⩾ 1，则它可以分解为 F [x] 中有限个不可约多

项式的乘积，并且分解式在不计次序和相差不为零常数倍的意义下是唯一的

例 83（判断）设 p(x), f(x) ∈ Q[x]\Q，若 p(x) 不可约且和 f(x) 有公共复根，则 p(x) | f(x)

例 84 多项式 f(x) = x4 − x2 − 2 在 R 上的标准分解式为

了解重根的定义和判别方法

定理 15.6 设 k ∈ N, k ⩾ 1，p(x) 是不可约多项式，则 p(x) 是 (f(x), f ′(x)) 的 k 重因式 ⇐⇒ p(x) 是 f(x) 的

k + 1 重因式

例 85 已知多项式 f(x) = x3 − 3x2 + tx− 1 有重根，则 t =

例 86（判断）在 F [x] 中，如果不可约多项式 p(x) 是 f ′(x) 的 k 重因式，则 p(x) 是 f(x) 的 k + 1 重因式

例 87（判断）设 p(x) 是数域 F 上次数 ⩾ 1 的多项式，如果在 F [x] 中 p(x) 的因式只有非零常数和 p(x) 的非零

常数倍，那么 p(x) 是 F 上的不可约多项式
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例 88（判断）设数域 K 包含数域 F, f(x) ∈ F [x]，如果 f(x) 在 F [x] 中没有重因式，则 f(x) 在 K[x] 中可能有

重因式

熟悉 C 和 R 上因式分解的特点

定理 15.7

(1) 设 f(x) ∈ C[x]，则 f(x) 可以唯一分解为 C[x] 中一次因式的乘积；

(2) 设 f(x) ∈ R[x]，则 f(x) 可以唯一分解为 R[x] 中一次因式或二次不可约因式的乘积

例 89（判断）x4 − 3x3 + 9x− 21 在 R 上不可约

16 有理系数多项式

Q[x] 上的因式分解实际上可以归结到 Z[x] 上，这是 Gauss 引理的推论

定理 16.1 （有理根定理）设 f(x) = anx
n + · · ·+ a0 ∈ Z[x]，如果有理数 c =

s

t
是 f(x) 的根，其中 s, t ∈ Z, t ̸=

0, (s, t) = 1，则 t | an, s | a0

例 90（判断）设 f(x) ∈ Q[x]，而且首项系数为 1，则 f(x) 的有理根必为整数

例 91 证明 f(x) = x3 − 6x− 1 在 Q 上不可约

学会使用 Eisenstein 判别法

定理 16.2 （Eisenstein 判别法）设 f(x) = anx
n + · · ·+ a0 ∈ Z[x]，如果存在素数 p 满足

(1) p ∤ an；

(2) p | ai, ∀ 0 ⩽ i ⩽ n− 1；

(3) p2 ∤ a0

则 f(x) 在 Q 上不可约

例 92（判断）x4 − 3x3 + 9x− 21 在 Q 上不可约；

例 93 证明多项式 f(x) = x4 + 4kx+ 1, k ∈ N 在有理数域上不可约

例 94 证明多项式 f(x) = xp + px+ 1, k ∈ N 在有理数域上不可约，其中 p 是奇素数

17 多项式理论的应用

例 95 用多项式理论证明包含 3
√
3 的最小数域是 Q[ 3

√
3] = {a+ b 3

√
3 + c 3

√
9|a, b, c ∈ Q}

以下问题使用“摄动法”解决
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例 96 设 A,B,C,D ∈ Mn(F )，且 AC = CA，证明∣∣∣∣∣ A B

C D

∣∣∣∣∣ = |AD − CB|

【提示：如果 A 可逆，对

(
A B

C D

)
进行分块变换即可，如果 A 不可逆，考虑 λI +A，上式两端都是 λ

的多项式】

例 97 设 A ∈ Mn(F ), B ∈ M1×n(F ), C ∈ Mn×1(F )，证明：∣∣∣∣∣ 0 B

C A

∣∣∣∣∣ = −BA∗C

例 98 设 A,B ∈ Mn(F ), AB = BA，证明 AB∗ = B∗A

如果没有特别说明，总假定数域为 F，U, V 等是 F 上的有限维线性空间。另外，从第 2 小节开始，我们总

考虑线性变换（而非线性映射）。

18 线性映射/变换的概念

定义.（线性映射和线性变换）设 σ : U → V 是一个映射，如果它具有线性性，即

(1) 加法：任意 α, β ∈ U，都有 σ(α+ β) = σ(α) + σ(β)；

(2) 数乘：任意 k ∈ F, α ∈ U，都有 σ(kα) = kσ(α)

则称 σ 是从 U 到 V 的一个线性映射。特别的，如果 U = V，即 σ 是从 U 到 U 的一个线性映射，则称 σ 是 U

上的一个线性变换。

例 99 考虑 F [x]n, n ⩾ 1 上的变换 σ : σ(f(x)) = f(x+ 3)，σ 是否是线性变换？

线性映射的定义与上学期所学线性空间之间的同态是相同的，它具有以下性质

定理 18.1 （线性映射与线性相关性）

我们将从 U 到 V 的所有线性映射放到一起，这样可以得到一个集合，记作 L(U, V ) 或者 HomF (U, V )。如

果 U = V，那么也简记为 L(U) 或者 EndF (U)。赋予 L(U, V ) 以下三种运算，可以验证 (L(U, V ),+, ·) 构成一

个 F 上的线性空间。

定义.（L(U, V ) 上的运算）

(1) 加法 +：(σ + τ)(α) := σ(α) + τ(α)；

(2) 数乘 ·：(k · σ)(α) := k(σ(α))；

(3) 复合 ◦：(σ ◦ τ)(α) := σ(τ(α))。

以上运算和矩阵非常相似，这启发我们通过矩阵研究线性映射。
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19 线性变换的矩阵

以下总设 U 是 F 上的 n 维线性空间，{ε1, · · · , εn} 是 U 的一组基。

定理 19.1 （线性变换与基）

(1)（一组基的像可以决定一个线性变换）设任意 n 个向量 α1, · · · , αn ∈ U，则存在一个线性变换 σ，它满足

σ(ε1) = α1, · · · , σ(εn) = αn；

(2)（以上关系的唯一性）设 σ, τ ∈ L(U)，如果

σ(ε1) = τ(ε1), · · · , σ(εn) = τ(εn)

那么便有 σ = τ。

例 100 考虑 n维线性空间 F [x]n，它有一组基 {1, x, · · · , xn−1}，对于 c ∈ F，定义映射 σ : {1, x, · · · , xn−1} → F [x]n

σc(x
m) = (x+ c)m ∈ F [x]n, 0 ⩽ m ⩽ n− 1

(1) 可以补充定义，使得 σc 成为 F [x]n 上的线性变换，并且

σc(f(x)) = f(x+ c) ∈ F [x]n, f(x) ∈ F [x]n

(2) 如果 c1 ̸= c2，那么 σc2 ̸= σc2。

定义.（线性变换的矩阵）用 {ε1, · · · , εn} 线性表出 {σ(ε1), · · · , σ(εn)}

σ(ε1) = a11ε1 + · · ·+ an1εn

· · · · · · · · ·

σ(εn) = a1nε1 + · · ·+ annεn

形式上可以记作 σ(ε1, · · · , εn) = (σ(ε1), · · · , σ(εn)) = (ε1, · · · , εn)


a11 · · · a1n
...

. . .
...

an1 · · · ann

 = (ε1, · · · , εn)A，这里的

矩阵 A = (aij) 被称为 σ 在一组基 {ε1, · · · , εn} 下的矩阵。

例 101 写出平面 R2 上下列线性变换在自然基下的矩阵

(1) 逆时针旋转 π

3
；

(2) 关于直线 y = 2x 的反射。
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从定理 2.1 可以证明，取定一组基后一个线性变换和它的矩阵可以唯一地互相决定，由此我们可以通过矩阵来

描述一个线性变换。作为最初步的性质，我们有

定理 19.2 （线性变换与矩阵的关系）设 {ε1, · · · , εn} 是 U 的一组基，对于任意 σ ∈ L(U)，记 M(σ) 为 σ 在

{ε1, · · · , εn} 下的矩阵。则 M : L(U) → Mn(F ) 有以下性质

(1) 双射：任意 A ∈ Mn(F )，存在（满的）唯一（单的）σ ∈ L(U)，使得 M(σ) = A；

(2) 加法：任意 σ, τ ∈ L(U)，都有 M(σ + τ) = M(σ) +M(τ)；

(3) 数乘：任意 k ∈ F, σ ∈ L(U)，都有 M(kσ) = kM(σ)；

(4) 乘法：任意 σ, τ ∈ L(U)，都有 M(σ ◦ τ) = M(σ)M(τ)；

(5) 作为 (4) 的推论，σ 可逆 ⇐⇒ M(σ) 可逆，并且 M(σ−1) = (M(σ))−1

以上 (1)(2)(3) 说明 M : L(U) → Mn(F ) 是线性空间之间的同构。结合 (4)(5) 说明 M 是 F -代数同构，这

比线性空间的同构更强。

例 102 在 F 3 中，线性变换 T : (x1, x2, x3) → (2x1 − x2, x2 + x3, x1) 在基 (1, 0, 0), (0, 1, 0), (0, 0, 1) 下的矩阵

为 。

例 103 定义 M2(F ) 上的线性变换 σ 如下：

σ(A) =

(
a b

c d

)
A

(
a b

c d

)

则 σ 在 M2(F ) 的自然基 E11, E12, E21, E22 下的矩阵为 。

20 线性变换在不同基下的矩阵

定义.（不同基之间的过渡矩阵）设 U 是 F 上的 n 维线性空间，S = {α1, · · · , αn}, T = {β1, · · · , βn} 是 U 的两

组基，用 S 线性表出 T 如下

β1 = p11α1 + · · ·+ pn1αn

· · · · · · · · ·

βn = p1nα1 + · · ·+ pnnαn

形式上可以记作 (β1, · · · , βn) = (α1, · · · , αn)


p11 · · · p1n
...

. . .
...

pn1 · · · pnn

 = (α1, · · · , αn)P，这里的矩阵 P = (pij) 被称

为从 S 到 T 的过渡矩阵。

注记. 这里的顺序不能颠倒！从 S 到 T 的过渡矩阵是 P，可以粗略地理解为 S 通过右乘 P 得到 T。
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定理 20.1 （过渡矩阵）以上定义地从 S 到 T 的过渡矩阵是唯一的，并且是可逆的，此外从 T 到 S 的过渡矩

阵是 P−1。

定理 20.2 （过渡矩阵和向量坐标的关系）设 U 是 F 上的 n 维线性空间，S = {α1, · · · , αn}, T = {β1, · · · , βn}

是 U 的两组基，P 是从 S 到 T 的过渡矩阵。对于向量 α ∈ U，如果 α 在 S 下的坐标为 X = (xi)，在 T 下的

坐标为 Y = (yj)，则我们有 X = PY。

注记. 一定要区分一个向量和它的坐标！在这个定理中，一个向量在不同基下对应于不同的坐标，它们的关系是

α = (α1, · · · , αn)X = (β1, · · · , βn)Y

下面的例子（非数组向量）有助于理解。

例 104 在 F [x]3 中，S = {1, x, x2}, T = {1, x− 1, (x− 1)2} 是两组基，向量 α = 1 + x+ 2x2

(1) (1, x− 1, (x− 1)2) = (1, x, x2)

 1 −1 1

0 1 −2

0 0 1

，即 P =

 1 −1 1

0 1 −2

0 0 1

 是从 S 到 T 的过渡矩阵；

(2) α 在两组基下的坐标为 X = (1, 1, 2)T 和 Y = (4, 5, 2)T，这可以通过配方或者求导计算出来，所以有

1 + x+ 2x2 = (1, x, x2)

 1

1

2

 = (1, x− 1, (x− 1)2)

 4

5

2



(3) 不难验证

 1

1

2

 =

 1 −1 1

0 1 −2

0 0 1


 4

5

2

，此即 X = PY。

例 105 设 σ 是 R3 上的线性变换。已知 σ((2,−2, 1)T ) = (4,−2, 2)T , σ((1, 1,−2)T ) = (5,−7, 2)T

(1) 求 σ((−1, 3,−3)T )；

(2) 若 σ((1, 1, 1)T ) = (15,−9, 6)T，求 σ 在基 (2,−2, 1)T , (1, 1,−2)T , (1, 1, 1)T 下的矩阵 A，并判断 σ 是

否可逆。

定理 20.3（线性变换在不同基下矩阵的关系）设 U 是 F 上的 n维线性空间，S = {α1, · · · , αn}, T = {β1, · · · , βn}

是 U 的两组基，P 是从 S 到 T 的过渡矩阵。若 U 上线性变换 σ 在 S 和 T 下的矩阵分别为 A 和 B，则我们

有 B = P−1AP。

注记. 从形式上可以这样理解：

(β1, · · · , βn)B = σ(β1, · · · , βn)

= σ((α1, · · · , αn)P ) = σ(α1, · · · , αn)P

= (α1, ·, αn)AP = (β1, · · · , βn)P
−1AP
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定义.（矩阵的相似）设 A,B ∈ Mn(F ) 如果存在可逆矩阵 P ∈ Mn(F ) 使得 B = P−1AP，则称 A 与 B 相似，

记作 A ∼ B。

利用矩阵的运算和性质，可以证明相似矩阵具有以下性质

定理 20.4 （相似矩阵的性质）设 A,B ∈ Mn(F ), A ∼ B，则有

(1) rankA = rankB；

(2) trA = trB；

(3) |A| = |B|；

(4) 若 A 可逆，则 B 也可逆，而且有 A−1 ∼ B−1；

(5) 设 f(x) ∈ F [x]，则有 f(A) ∼ f(B)。

例 106 设 A ∈ Mn(F )，且 A 可逆，则下列结论正确的是 。

(A) A 与 B 相似；

(B) A 与 B 等价；

(C) AB 与 BA 相似且等价；

(D) AB 与 BA 等价却不一定相似

例 107 从下列矩阵中，选出与

 1

1

3

 相似的矩阵 。

(A)

 1

1

3

；

(B)

 1 0 2

0 1 0

0 0 3

；

(C)

 1 2 0

0 1 0

0 0 3



(D)

 1 2 0

0 1 2

0 0 3



21 像与核

定义.（像与核）设 σ 是 U 上的线性变换

(1) 定义 Imσ = {σ(α) ∈ U |α ∈ U}；

(2) 定义 Kerσ = {α ∈ U |σ(α) = 0}。

容易验证以下性质

定理 21.1 （像与核都是子空间）对于 U 上的线性变换 σ，Kerσ, Imσ 都是 U 的子空间。

正是因为这一点，我们可以谈论它们的维数，并且利用线性相关性的理论来研究像与核。
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定理 21.2 （像与核的维数公式）设 σ 是 U 上的线性变换，则有

dimU = dim Imσ + dim Kerσ

定义.（线性变换的秩）我们定义 U 上线性变换 σ 的秩 rankσ = dim Imσ。以上维数关系可以写成 dimU =

rankσ + dim Kerσ。

通过以下定理，我们能更好地理解线性变换和矩阵的对应关系。

定理 21.3 （线性变换和矩阵的秩）设 σ 是 U 上的线性变换，A 是 σ 在某组基下的矩阵，则我们有

(1) rankA = rankσ；

(2) dimVA = dim Kerσ。

注记. 以上关系 dimVA = dim Kerσ 并不表示 VA = Kerσ！它们实际上处于两个截然不同的空间之中，只是因

为维数相同而线性同构。

定理 21.4 （单射与满射等价）设 σ 是有限维线性空间 U 上的线性变换，则以下几条等价

(1) σ 是可逆线性变换；

(2) Kerσ = {0}，即 σ 是单射；

(3) Imσ = U，即 σ 是满射。

例 108 定义 M2(R) 上的线性变换如下：

σ(X) = AX −XA, ∀X ∈ M2(R), 其中 A =

(
1 2

0 3

)

分别求 Imσ 和 Kerσ 的维数和一组基。

例 109 设 V 是数域 F 上的 n维线性空间，σ 是 V 上的线性变换，rankσ = n−1，并且存在 k ∈ N∗，使得 σk = 0。

证明：存在 α ∈ V，使得

V = L{α, σ(α), · · · , σn−1(α)}

例 110 设 V 是数域 F 上的 n 维线性空间，σ 是 V 上的线性变换。证明以下几条等价：

(1) V = Kerσ ⊕ Imσ；

(2) Kerσ = Kerσ2；

(3) Imσ = Imσ2。

例 111 设 V 是 n维线性空间，σ, τ 是 V 上的线性变换，并且 στ = σ，证明Kerσ∩ Im τ = {0} ⇐⇒ rankσ = rank τ。
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22 特征值与特征向量

一个矩阵能否相似对角化是非常重要的问题，我们正是以此为动机提出特征值和特征向量的概念。

定义.（特征值和特征向量）

(1) 设 σ ∈ L(U) 是 U 上的线性变换，如果存在 λ ∈ F, α ̸= 0 ∈ U，使得

σ(α) = λα

则称 λ 是 σ 的一个特征值，并称 α 是属于 λ 的一个特征向量；

(2) 设 A ∈ Mn(F ) 是 F 上的 n 阶方阵，如果存在 λ ∈ F,X ̸= 0 ∈ Fn，使得

AX = λX

则称 λ 是 A 的一个特征值，并称 X 是属于 λ 的一个特征向量。

出于方便，以下这些性质均以矩阵为例进行叙述，这些结论对于线性变换往往也是成立的。

定理 22.1 （特征值和特征向量的初步性质）设 A ∈ Mn(F )

(1) 设 λ 是 A 的特征值，X1 ̸= X2 是属于 λ 的特征向量，则

• X1 −X2 是属于 λ 的特征向量；

• 任意 k ̸= 0 ∈ F，都有 kX1 是属于 λ 的特征向量

(2) 由 (1) 可知，Vλ = {X ∈ Fn|X 是 A 的特征向量 } ∪ {0} 是 Fn 的一个子空间，称为属于 λ 的特征子空间；

(3) 设 f(x) ∈ F [x], λ 是 A 的特征值，X 是属于 λ 的特征向量，则

• f(λ) 是 f(A) 的特征值；

• X 是 f(A) 的属于 f(λ) 的特征向量

注记. 以上定理的 (3) 反过来并不成立，即 f(λ) 是 A 的特征值 ⇏ λ 是 A 的特征值；X 是 f(A 的特征向量

⇏ X 是 A 的特征向量，因此它们往往具有不同的特征子空间。

例 112 设 A 是 R 上的 n 阶矩阵，则下列说法与“A 可逆”等价的为 。

(1) A 的列向量组线性无关；

(2) Ker A = {0}；

(3) Im A = Rn；

(4) rank A = n；

(5) |A| ̸= 0；
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(6) 0 不是 A 的特征值。

例 113 设 U 是 R 上的 3 维线性空间，σ 是 U 上的线性变换，则下列关于 σ 的特征值和特征向量的说法，错误的

是

(A) σ 可能没有特征值；

(B) 如果 α 是 σ 的属于特征值 λ0 的特征向量，则 kα, k ̸= 0 ∈ R 也是 σ 的属于 λ0 的特征向量；

(C) 设 λ1, λ2 是 σ 的两个不同的特征值，α1, α2 分别为属于 λ1, λ2 的特征向量，则 α1 +α2 一定不是 σ 的

特征向量；

(D) 如果 λ0 是 σ 的特征值，f(x) ∈ R[x]，则 f(λ0) 是 f(σ) 的特征值。

例 114 证明

(1) 若 α, β 分别是属于特征值 λ, µ 的特征向量，且 λ ̸= µ，则 α+ β 不是特征向量；

(2) 若线性空间 V 上的线性变换 σ 以所有非零向量为特征向量，则 σ 必是 V 上的数乘变换。

例 115 设 A =

 a −2 0

b 1 −2

c −2 0

 有三个特征值 0, 1,−2，则 a = ，b = ，c = 。

例 116 设 A ∈ M3(F )，且 A 为对称矩阵，特征值为 λ1 = −1, λ2 = λ3 = 1。若 A 的一个属于 −1 的特征向量为

α = (0, 1, 1)T，则 A = 。

例 117 设 σ 为 n 维线性空间 U 上的线性变换，满足 σ2 = σ。证明

(1) σ 的特征值只可能为 0, 1;

(2) 记 V0, V1 分别为特征值 0, 1 的特征子空间，则

dimV0 + dimV1 = n

(3) σ 在 U 的某组基下的矩阵为 B =



0
. . .

0

1
. . .

1


。

定理 22.2 （特征向量和可对角化）

(1) 设 σ ∈ L(U)，其中 U 是 F 上的 n 维线性空间，则 σ 可对角化 ⇐⇒ σ 有 n 个线性无关的特征向量；

(2) 设 A ∈ Mn(F )，则 A 可对角化 ⇐⇒ A 有 n 个线性无关的特征向量。

定义.（特征多项式）设 A ∈ Mn(F )，称 f(λ) = |λI −A| 为 A 的特征多项式，为了区分，有时也记作 fA(λ)。
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定理 22.3 （特征多项式的性质）设 A ∈ Mn(F )，fA(λ) = |λI −A| 为 A 的特征多项式。

(1) λ0 是 fA(λ) 的根 ⇐⇒ λ0 是 A 的特征值；

(2) 由 (1) 可知，做分解 fA(λ) = (λ− λ1) · · · (λ− λn)，则 λ1, · · · , λn 是 A 的 n 个特征值；

(3) 由 (2) 结合 Vieta 定理可知

• |A| = λ1 · · ·λn；

• trA = λ1 + · · ·+ λn

(4) 若 A ∼ B 则 fA(λ) = fB(λ)。

例 118 设 A ∈ Mn(C), α, β ∈ Cn，并且 βTAα ̸= 0。设 B = AαβT ∈ Mn(C)，证明矩阵 B 可对角化。

23 特征子空间与对角化，不变子空间与准对角化

定义.（特征子空间）

(1) 设 A ∈ Mn(F )，λ ∈ F 是 A 的特征值，则 Vλ = {X ∈ Fn|AX = λX} = VA−λI 称为 A 的属于特征值 λ 的

特征子空间；

(2) 设 U 是数域 F 上的线性空间，σ ∈ L(U)，λ 是 σ 的特征值，则 Vλ = {α ∈ U |σ(α) = λα} = Ker(σ − λI)

称为 σ 的属于 λ 的特征子空间。

例 119 给定方阵 A，下列关于 A 的那些性质在相似变换下保持不变 。

(1) 特征多项式；

(2) 特征子空间；

(3) 最小多项式；

(4) 像空间；

(5) 核空间。

下面的定理是进行子空间分解的依据。

定理 23.1 （特征子空间的直和）设 U 是数域 F 上的线性空间，σ ∈ L(U)，则对于 σ 属于不同特征值 λi 的特

征子空间 Vλi
，它们的和为直和。

以下定义代数重数与几何重数，并且给出矩阵可对角化的一个等价条件。

定义.（代数重数与几何重数）设 A ∈ Mn(F )，它的特征多项式为 fA(λ) = (λ − λ1)
n1 · · · (λ − λt)

nt，其中

λ1, · · · , λt ∈ C 是 A 的全部不同的特征值

(1) 称 ni 为特征值 λi 的代数重数；

(2) 称 mi = dimVλi
为特征值 λi 的几何重数。

定理 23.2 （几何重数与代数重数）
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(1) 几何重数不超过代数重数，即 1 ⩽ mi ⩽ ni, 1 ⩽ i ⩽ t；

(2) 矩阵 A 可对角化 ⇐⇒ m1 + · · ·+mt = n ⇐⇒ mi = ni, 1 ⩽ i ⩽ t；

(3) 作为 (2) 的推论，如果 A 的所有特征值都是单根，则 A 在 C 上可对角化。

例 120（判断）设 A ∈ Mn(F )，则 A 可对角化当且仅当 A 的特征多项式在 F 中有 n 个根（计重数）。

例 121 设 A =


a b · · · b

c a
...

. . .

c a

 ∈ Mn(F )，求 A 可对角化的充要条件。

引入不变子空间的概念，它比特征子空间更加广泛，并且可以给出矩阵可准对角化的条件。

定义.（不变子空间）设 U 是数域 F 上的线性空间，σ ∈ L(U)。若 V 是 U 的子空间，并且满足 σ(V ) ⊆ V，则

称 V 是一个 σ 的不变子空间。

定理 23.3 （可交换的线性变换与不变子空间）设 U 是数域 F 上的线性空间，σ, τ ∈ L(U)。若 στ = τσ，则

Im τ,Ker τ 都是 σ 的不变子空间；Imσ,Kerσ 都是 τ 的不变子空间。

如果 U = V ⊕W，其中 V,W 是 σ 的不变子空间，则 σ 在某组基下的矩阵是准对角阵。进行推广就能得到

定理 23.4 （准对角化的条件）设 U 是数域 F 上的线性空间，σ ∈ L(U)，则 σ 在某组基下的矩阵为准对角阵

⇐⇒ U 可以分解成一些 σ 的不变子空间的直和。

例 122 设 V 是数域 F 上的 n 维线性空间，σ, τ 是 V 上的线性变换，στ = τσ，并且 σ 可对角化。证明存在 V 的

一组基，使得 σ, τ 在这组基下的矩阵均为准对角矩阵。

24 零化多项式与最小多项式

定义.（零化多项式与最小多项式）

(1) 设 A ∈ Mn(F )，如果 f(x) ̸= 0 ∈ F [x] 满足 f(A) = 0，则称 f(x) 是 A 的一个零化多项式。我们称 A 所有

零化多项式中次数最低的首一多项式为 A 的最小多项式。

(2) 设 U 是数域 F 上的线性空间，σ ∈ L(U)，如果 f(x) ̸= 0 ∈ F [x] 满足 f(σ) = 0，则称 f(x) 是 σ 的一个零

化多项式。我们称 σ 所有零化多项式中次数最低的首一多项式为 σ 的最小多项式。

定理 24.1 （零化多项式与最小多项式）

(1)（存在性）任意 A ∈ Mn(F ) 都存在零化多项式；

(2)（Hamilton-Caley）对于任意 A ∈ Mn(F )，它的特征多项式 fA(λ) 是一个零化多项式；

(3)（最小多项式是零化多项式的因式）设 A ∈ Mn(F )，f(x) 是它的一个零化多项式，d(x) 是它的一个最小多

项式，则 d(x) | f(x)；
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(4)（最小多项式的唯一性）由 (3) 可知，最小多项式存在且唯一；

(5)（和矩阵相似的关系）相似的矩阵具有相同的零化多项式，因此具有相同的最小多项式；

(6)（与特征值的关系 I）设 A ∈ Mn(F )，f(x) 是它的一个零化多项式，则 A 的任意特征值都是 f(x) 的根；

(7)（与特征值的关系 II）设 A ∈ Mn(F )，d(x) 是它的最小多项式，则 d(x) 的任意根都是 A 的特征值。

例 123（判断）如果矩阵 A,B ∈ Mn(F ) 有相同的特征多项式、最小多项式，则它们相似。

定理 24.2 （最小多项式与可对角化）设 A ∈ Mn(C)，则 A 可对角化 ⇐⇒ A 的最小多项式没有重根。

例 124 下列说法错误的是 。

(A) 如果 A ∈ M4(R) 满足 A3 −A2 − 4A+ 4I = 0，则 A 在 R 上一定可对角化；

(B) 如果 B ∈ Mn(F ) 满足 B5 = 0，则 B 只有一个特征值 0；

(C) 属于 F 上的矩阵的最小多项式和特征多项式在 F 中有相同的根；

(D) 有相同特征多项式和最小多项式的两个矩阵一定相似。

例 125 设 A =

 1 1 2

2 1 2

3 2 1

，则 A 的最小多项式为 。

例 126 设 A ∈ Mn(C)，证明

(1) A 的最小多项式 d(λ) 是 A 的任一个零化多项式 φ(λ) 的因式；

(2) 若 λ0 是 A 的特征值，则 d(λ0) = 0.

例 127 设 A ∈ Mn(F )，证明

(1) A 是幂零矩阵，即存在 k ∈ N∗，使得 Ak = 0 ⇐⇒ A 的特征值都为 0；

(2) 若 rankA = 1，则 A 是幂零矩阵 ⇐⇒ trA = 0；

现在我们可以给出判断一个矩阵在 C 上可对角化的种种条件。需要注意，即使一个矩阵在 C 上可对角化，

在更小的数域 F 上也不一定可以对角化。

定理 24.3 （C 上可对角化的条件）设矩阵 A ∈ Mn(C)，则 A 在 C 上可对角化有如下

ã 充分必要条件

(1) 存在 n 个线性无关的特征向量；

(2) 所有特征子空间的直和为 Cn；

(3) 所有特征子空间的维数之和为 n；

(4) 所有特征值的代数重数都等于几何重数；

(5) A 的最小多项式 d(x) 没有重根。



理
科
高
等
代
数

理科高等代数 29 / 43

ã 充分条件

(1) 所有特征值的代数重数都为 1；

(2) 如果矩阵 A 可对角化，f(x) ∈ F [x]，则 f(A) 也可对角化。

注记. 设 A ∈ Mn(F )，则 A 在数域 F 上可对角化意味着：

(1) A 的全部特征值都在 F 中，或者说特征多项式 fA(λ) 可以在 F 上分解为 1 次因式的乘积；

(2) A 满足以上在 C 上可对角化的任一条件，即作为 A ∈ Mn(C) 是可对角化的。

例 128 设 A =

 1 2 −2

0 −1 b

0 0 −1

 可相似对角化，求 b。

例 129 设 A ∈ Mn(C) 可对角化，f(x) ∈ C[x]，证明 B =

(
A f(A)

f(A) A

)
∈ M2n(C) 也可对角化。

例 130 设 V 是数域 F 上的 n 维线性空间，试证明以下结论

(1) 若 A ∈ Mn(F ) 满足 A2 = A，则 trA = rankA;

(2) 设 σ 是 V 上的线性变换，满足 σm = idV，证明 σ 在 C 上可对角化；

(3) 对于 (2) 中的 σ，设 V1 为特征值 1 的特征子空间，并且定义 V 上的线性变换 τ =
1

m

m−1∑
i=0

σi，则有

tr τ = dimV1。

例 131 设 A ∈ Mn(F )，A 可对角化。定义 Mn(F ) 上的线性变换 σ : X → AXAT。证明 σ 可对角化。

例 132 设 A ∈ Mn(F )，A 可对角化。定义 Mn(F ) 上的线性变换 σ : X → AXTAT。证明 σ 可对角化。

25 Jordan 形简介

定理 25.1 （相似上三角化）设矩阵 A ∈ Mn(F )，则 A 在 C 上相似于一个上三角形矩阵。

作为更强的结论，任何矩阵都在 C 上相似于一个 Jordan 形矩阵。我们并不打算给出这一结论的证明，而是

打算给出一些例子，这能帮助大家理解可对角化矩阵的性质，也有助于构造反例。

定义.（Jordan 块和 Jordan 形矩阵）

(1) 设 a ∈ C,m ∈ N∗，则矩阵



a 1

a 1
. . .

. . .

a 1

a


∈ Mm(C) 被称为一个 m 阶 Jordan 块，记作 Jm(a)；
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(2) 形如


Jm1

(a1)
. . .

Jmk
(ak)

，其中 ai ∈ C,mi ∈ N∗, 1 ⩽ i ⩽ k 的矩阵被称为 Jordan 形矩阵。

例 133 以下矩阵都是 Jordan 形矩阵

(1) 任意对角形矩阵 A ∈ Mn(C)；

(2) B =


0 1

0

2

3

；

(3) C =


1 1

1

1 1

1 1

1

。

定理 25.2 （Jordan 形的主定理）设 A ∈ Mn(C)，则 A 一定相似于一个 Jordan 形矩阵 J，并且矩阵 J 的各个

Jordan 块在不计顺序的意义下是唯一的。

注记. 这一定理的结论可以记住，但是因为课本并没有给出证明，在考试的解答题中不能使用它！

例 134 证明矩阵 A =


1

1 1

1 1

1

 和矩阵 B =


1 1

1

1 1

1

 不相似。

例 135 证明矩阵 A =

 1 1

1 1

1

 和矩阵 B =

 1 2 1

1 2

1

 相似。
例 136 设 V 是数域 F 上的 n 维线性空间，σ 是 V 上的线性变换，(σ − idV )

n = 0, (σ − idV )
n−1 ̸= 0。证明存在

V 的一组基，使得 σ 在这组基下的矩阵为



1 1

1 1
. . .

. . .

1 1

1


。

例 137 对 a ̸= 0 证明 

a 1

a 1
. . .

. . .

a 1

a


∼



a a

a a
. . .

. . .

a a

a


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26 二次型及其矩阵

在本节中，数域总设为 F。

定义.（n 元二次型及其矩阵）

(1) 称 F 上的 n 元二次多项式 f =
∑n

i=1 aiix
2
i + 2

∑
1⩽i<j⩽n aijxixj 为 F 上的一个 n 元二次型。如果 F = R

或 C，则称它为一个实二次型或复二次型；

(2) 对于 i > j，令 aij = aji，由此得到一个对称矩阵A = (aij)，如果令 X = (x1, · · · , xn)
T，则有 f = XTAX。

称 A 为二次型 f 的矩阵，A 的秩为二次型 f 的秩。

注记. 不难发现，F 上的 n 元二次型和 n 阶对称矩阵形成一一对应。

例 138 二次型 f(x1, x2, x3) = (a1x1 + a2x2 + a3x3)
2 的矩阵为 。

例 139 设实二次型 f(x1, x2, x3) = 5x2
1 + 5x2

2 + cx2
3 − 2x1x2 + 6x1x3 − 6x2x3 的秩为 2，则 c = 。

(A) 1； (B) 2； (C) 3； (D) 4

27 二次型的标准形与规范形

定义.（可逆线性替换）设 X = (x1, · · · , xn)
T , Y = (y1, · · · , yn)T。如果可逆矩阵 C ∈ Mn(F ) 满足 X = CY，则

称 C 是从变元 x1, · · · , xn 到变元 y1, · · · , yn 的一个可逆线性替换。

注意到 f = XTAX = (CY )TAY = Y TCTACY，如果将 f 视为关于 Y 的二次型，那么 f 的矩阵变为

CTAC。这启发我们定义矩阵的相合关系。

定义.（矩阵的相合）设 A,B ∈ Mn(F )，如果存在可逆矩阵 C ∈ Mn(F ) 使得 B = CTAC，则称 A 与 B 相合，

记作 A ≃ B。

例 140 设 A,B 是 n 阶实对称方阵，以下 4 个断言正确的个数是 。

(1) 若 A 与 B 相合，则 A 与 B 相似；

(2) 若 A 与 B 相抵，则 A 与 B 相合；

(3) 若 A 与 B 相似，则 A 与 B 相合；

(4) 若 A 与 B 相似，则 A 与 B 相抵；

(A) 1 个； (B) 2 个； (C) 3 个； (D) 4 个

定理 27.1 (二次型的可逆线性替换和矩阵相合的关系) 数域 F 上的二次型 f 可以通过可逆线性替换化为二次型

g 当且仅当 f 的矩阵 A 和 g 的矩阵 B 相合。

定义.（二次型的标准形）称只含平方项的二次型
∑n

i=1 dix
2
i 为标准二次型。如果二次型 f 通过可逆线性替换变

为标准二次型 g =
∑n

i=1 dix
2
i，则称 g 为 f 的一个标准形。



理
科
高
等
代
数

理科高等代数 32 / 43

定理 27.2 (标准形的存在性) 数域 F 上的任意一个二次型 f 都可以通过可逆线性替换化为标准形。

例 141 实二次型 f(x1, x2, x3) = −4x1x2 + 2x1x3 + 2x2x3 的标准形为 ，规范形为 。

例 142 求二次型 f(x1, · · · , xn) =
∑n

i,j=1 max{i, j}xixj 的标准形。

定理 27.3 (C 上的规范形) 任意一个复 n 元二次型 f 可以通过 C 上的可逆线性替换化为 z21 + · · ·+ z2r 的形式，

这称为 f 在 C 上的规范形，其中 r 为 f 的秩。

注记. 上述 C 上的规范形是唯一的，并且完全由二次型的秩决定。

定理 27.4 (R 上的规范形) (1) 任意一个实二次型 f 可以通过 R 上的可逆线性替换化为 z21 + · · ·+ z2p − z2p+1 −

· · · − z2r 的形式，这称为 f 在 R 上的规范形，其中 r 为 f 的秩；

(2) 一个实二次型的在 R 上的规范形是唯一的。

例 143 二次型 f(x1, x2, x3) = x2
2 + 2x1x2 + 4x1x3 + 2x2x3 在实数域上的规范形为 。

定义.（惯性指数）

(1) 称实二次型 f 的规范形中正平方项的个数 p 为 f 的正惯性指数，负平方项的个数 q = r − p 为 f 的负惯

性指数，p− q = 2p− r 为 f 的符号差;

(2) 设 A 是实对称矩阵，称二次型 f = XTAX 的正惯性指数、负惯性指数、符号差为矩阵 A 的正惯性指数、

负惯性指数、符号差。

定理 27.5 (实对称矩阵的相合标准形)

(1) 设 A 是实对称矩阵，则 A 和矩阵

 Ip

−Ir−p

0

 相合，其中 p, r − p 分别是 A 的正、负惯性指数；

(2) 作为 (1) 的推论，两个 n 阶实对称矩阵相合当且仅当它们有相同的秩和正惯性指数；

(3) 作为 (2) 的推论，n 阶实对称矩阵按照相合的等价关系可以划分为
1

2
(n+ 1)(n+ 2) 类。

例 144 设 A =

 1 2 0

2 1 0

0 0 1

，则下列矩阵中与 A 在实数域上相合的是 ，在复数域上相合的是 。

(1)

 1 0 0

0 1 0

0 0 1

； (2)

 1 0 0

0 −1 0

0 0 1

； (3)

 1 0 0

0 1 0

0 0 0

； (4)

 1 0 0

0 −1 0

0 0 0


例 145 将所有 4 阶实对称矩阵按实数域范围内的相合关系分类，彼此相合的矩阵属于同一类，不相合的矩阵属于

不同类，则一共有 类。
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(A) 4； (B) 5； (C) 10； (D) 15

例 146 设 A 为实 n 阶非奇异矩阵，若 A 与 −A 在实数域上相合，则 n 的奇偶性为 。

例 147 对于实对称矩阵 A，记 p(A), q(A) 为它的正、负惯性指数。设 A,B 是 n 阶实对称矩阵，证明

p

(
A

B

)
= p(A) + p(B), q

(
A

B

)
= q(A) + q(B)

例 148 设 A,B 是 n 阶实对称矩阵，证明

p(A) + p(B) ⩾ p(A+B), q(A) + q(B) ⩾ q(A+B)

28 正定/半正定/负定/半负定/不定二次型及其矩阵

从本节开始，如果不特别说明，数域总设为 R。

定义.（正定/半正定/负定/半负定/不定二次型及其矩阵）设 f(X) = XTAX 为 n 元实二次型，A 为实对称矩阵

(1) 如果对于任意 X ̸= 0 ∈ Rn，都有 f(X) > 0，则称 f 为正定二次型，称 A 为正定矩阵，记作 A > 0；

(2) 如果对于任意 X ̸= 0 ∈ Rn，都有 f(X) ⩾ 0，则称 f 为半正定二次型，称 A 为半正定矩阵，记作 A ⩾ 0；

(3) 如果对于任意 X ̸= 0 ∈ Rn，都有 f(X) < 0，则称 f 为负定二次型，称 A 为负定矩阵，记作 A < 0；

(4) 如果对于任意 X ̸= 0 ∈ Rn，都有 f(X) ⩽ 0，则称 f 为半负定二次型，称 A 为半负定矩阵，记作 A ⩽ 0；

(5) 如果 f 不是半正定也不是半负定二次型，则称 f 为不定二次型，称 A 为不定矩阵。

定理 28.1 (正定性与负定性，半正定性与半负定性) 设 A 是实对称矩阵，

(1) A 是正定矩阵当且仅当 −A 是负定矩阵；

(2) A 是半正定矩阵当且仅当 −A 是半负定矩阵。

注记. 这条性质说明只需要研究正定和半正定矩阵即可。

定理 28.2 (正定矩阵的等价条件) 设 A 是 n 阶实对称矩阵，则 A 是正定矩阵当且仅当

(1) 对于任意 X ̸= 0 ∈ Rn，都有 XTAX > 0；

(2) A 与单位矩阵 I 相合；

(3) A 的正惯性指数为 n；

(4) 存在可逆矩阵 C ∈ Mn(R)，使得 A = CTC；
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(5) A 的所有顺序主子式都大于 0。

定理 28.3 (正定矩阵的简单性质) 设 A,B 是 n 阶正定矩阵，

(1) A−1, A∗, Ak, k ∈ N∗ 都是正定矩阵。

(2) A+B 是正定矩阵。

例 149 设 A,B 是正定矩阵，则下列说法正确的是 。

(A) A+B,AB 都是正定矩阵；

(B) AB 是正定矩阵，A+B 不是正定矩阵；

(C) A+B 是正定矩阵，AB 不一定是正定矩阵；

(D) A+B 是正定矩阵，AB 不是正定矩阵

注记. 注意，正定矩阵的乘积往往不是正定矩阵，它甚至往往不是实对称矩阵。

例 150 已知实二次型 f(x1, x2, x3) = XTAX 是半正定的，k0 为正实数。证明：k0I +A 是正定的。

例 151 设 A ∈ Mn(F ) 且 rankA = n。证明：ATA 是正定矩阵。

例 152 设 A 是实反对称矩阵，试证：I −A2 是正定矩阵。

例 153 已知

 5 x

2− x x+ y

x− y2

 , x, y ∈ R 是正定矩阵，则 y 的取值范围是 。

(A) −4

5
< y < 1； (B) −

√
|x| < y <

√
|x|； (C) y < −1； (D) −1 < y < 1

例 154 n 元实二次型 Q(X) = XTAX 负定的充要条件是 。

(A) |A| < 0；

(B) 任给 n 维非零实向量 X，都有 XTAX < 0；

(C) A 的各阶顺序主子式均为负数；

(D) Q(X) 的正惯性指数 p = 0

例 155 已知 A 为 n 阶实对称矩阵，则下列论断能保证 A 为正定矩阵的有 。

(1) A 能表示为一个正定矩阵的平方；

(2) A 的正惯性指数等于 A 的秩；

(3) A 的特征值均大于 0；

(4) A 与单位矩阵相合
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(A) 1 个； (B) 2 个； (C) 3 个； (D) 4 个

例 156 设 A 是 n 阶正定矩阵，证明实二次型 f(X) =

∣∣∣∣∣ A X

XT 0

∣∣∣∣∣ 是负定二次型。
下面几个问题需要使用 Rn 中的 Cauchy-Schwarz 不等式。

例 157 设 A 是 n 阶正定矩阵，α, β ∈ Rn，证明：αTβ ⩽ (αTAα)(βTA−1β)，等号成立当且仅当 Aα 与 β 成比例。

例 158 设 A 是 n 阶正定矩阵，α, β ∈ Rn 满足 αTβ > 0，证明：B = A− AββTA

βTAβ
+

ααT

αTβ
是正定矩阵。

例 159 设 α, β ∈ Rn 满足 αTβ > 0，

(1) 证明 A = I − ββT

βTβ
+

ααT

αTβ
是正定矩阵；

(2) 证明 α = Aβ。

定理 28.4 (半正定矩阵的等价条件) 设 A 是 n 阶实对称矩阵，则 A 是半正定矩阵当且仅当

(1) 对于任意 X ̸= 0 ∈ Rn，都有 XTAX ⩾ 0；

(2) A 与矩阵 diag(d1, · · · , dn) 相合，其中 d1, · · · , dn ⩾ 0；

(3) A 的负惯性指数为 0；

(4) 存在矩阵 C ∈ Mn(R)，使得 A = CTC；

(5) A 的所有主子式都大于等于 0。

例 160 设 f(X) = XTAX 是实数域上的半正定 n 元二次型，下列论断中正确的是 。

(1) f 的正惯性指数是 n；

(2) f 的标准形中，所有平方项的系数都大于等于 0；

(3) A 的所有顺序主子式都大于等于 0；

(4) A 的所有特征值都大于等于 0

(A) (2)(3)(4)； (B) (1)(2)(3)(4)； (C) (2)(4)； (D) (2)

例 161（很实用！）设 A 是 n 阶半正定矩阵，α ∈ Rn 满足 αTAα = 0，证明 Aα = 0。

例 162 设 A 是 n 阶半正定矩阵，B 是 n 阶反对称矩阵，证明：

(1) 对于 X ∈ Rn，(A+B)X = 0 当且仅当 AX = BX = 0；

(2) rank(A+B) = rank
(

A B
)
。

例 163 设 A 是 n 阶实对称矩阵，B 为 n 阶半正定矩阵，并且 |A + iB| = 0。证明：存在 α ̸= 0 ∈ Rn，使得

Aα = Bα = 0。
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例 164 设 A 是 n 阶半正定矩阵，将 A 分块为 A =

(
A11 A12

AT
12 A22

)
，其中 A11 ∈ Mr(R), A22 ∈ Mn−r(R)。证明

(1) A11, A22 也是半正定矩阵；

(2) rankA11 = rank
(

A11 A12

)
，因此存在矩阵 B ∈ Mr×(n−r)，使得 A11B = A12；

(3) 如果 A11 = O，那么 A12 = O。

例 165 设 A,B 是 n 阶半正定矩阵，证明：AB 可对角化。

例 166 设 A ∈ Mn(R) 满足 A2 = A，证明：如果对于任意 α ∈ Rn 都有 αTATAα ⩽ αTα，那么 A = ATA。

29 内积与欧氏空间

定义.（内积与欧氏空间）设 V 是 R 上的一个线性空间，如果映射 (•, •) : V × V → R 满足以下性质

(1) 对称性：任意 α, β ∈ V，都有 (α, β) = (β, α)；

(2) 线性性：任意 k1, k2 ∈ R, α, β, γ ∈ V，都有 (k1α+ k2β, γ) = k1(α, γ) + k2(β, γ)；

(3) 正定性：任意 α ∈ V，都有 (α, α) ⩾ 0，并且 (α, α) = 0 当且仅当 α = 0

则称 (•, •) 是 V 上的一个内积，称 (V, (•, •)) 是一个欧氏空间。

定理 29.1 (Cauchy-Schwarz 不等式) 设 V 是欧氏空间，则对于任意 α, β ∈ V，都有 |(α, β)|2 ⩽ (α, α)(β, β)，等

号成立当且仅当 α, β 线性相关。

定义.（长度和夹角）

(1) 设 α ∈ V，称
√
(α, α) 为 α 的长度，记作 |α|；

(2) 设 α, β ∈ V，称 θ = arccos (α, b)

|α||β|
∈ [0, π] 为 α, β 的夹角。

例 167 设 V 是欧氏空间，v1, v2, v3 ∈ V。已知 |v1| = 1, |v2| = 2, |v3| = 3, (v1, v2) = 0, (v2, v3) = 6，则向量组

v1, v2, v3 的秩是 。

例 168 在标准内积欧氏空间 R4 中，向量 α = (1, 2, 2, 3) 与向量 β = (3, 1, 5, 1) 的夹角为 。

定义.（单位向量，向量的正交）

(1) 设 α ∈ V，如果 |α| = 1，则称 α 为单位向量；

(2) 设 α, β ∈ V，如果 (α, β) = 0，则称 α, β 相互正交，记作 α ⊥ β。

例 169 在 R3 中定义内积 ∀α = (x1, x2, x3), β = (y1, y2, y3) ∈ R3：

(α, β) = x1y1 + 2x2y2 + 3x3y3

则以下向量中与向量 (1, 2, 3) 正交的是 。
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(A) (1, 2,−1)；

(B) (0, 1, 0)；

(C) (1, 1,−1)；

(D) (1,−1, 0)

定理 29.2 (勾股定理) 设 α, β ∈ V 满足 α ⊥ β，则 |α+ β|2 = |α|2 + |β|2。

例 170 设 α, β 为 n 维实正交向量，则下列说法错误的是 。

(A) |α+ β|2 = |α|2 + |β|2；

(B) |α+ β| = |α− β|；

(C) |α− β|2 = |α|2 + |β|2；

(D) |α+ β| = |α|+ |β|

例 171 设 V 是 n维欧氏空间，α0, · · · , αn ∈ V 满足任意两个元素之间的距离为 d > 0。令 βi = αi−α0, 1 ⩽ i ⩽ n，

证明：

(1) (βi, βj) =
d2

2
, 1 ⩽ i < j ⩽ n；

(2) {β1, · · · , βn} 是 V 的一组基。

如何在一个 n 维线性空间上定义内积？或者说 n 维线性空间上的内积取决于什么？为了回答这些问题，我

们需要给出度量矩阵的概念。

定义.（度量矩阵）设 (V, (•, •)) 是一个欧氏空间，{ε1, · · · , εn} 是一组基。记 aij = (εi, εj)，并且令 A = (aij)，

这称为 {ε1, · · · , εn} 关于内积 (•, •) 的度量矩阵。

例 172 设 A =

 1 0 1

0 2 0

1 0 3

，定义 R3 上的内积：(X,Y ) = XTAY。求此内积在 R3 的基 α1 = (1, 0, 0)T , α2 =

(1, 1, 0)T , α3 = (1, 1, 1)T 下的度量矩阵。

对于任意 α, β ∈ V，设 α = (ε1, · · · , εn)X,β = (ε1, · · · , εn)Y，其中 X = (x1, · · · , xn)
T , Y = (y1, · · · , yn)T ∈

Rn，那么有

(α, β) =
n∑

i,j=1

(xiεi, yjεj) =
n∑

i,j=1

aijxiyj = XTAY

上式说明，取定一组基 {ε1, · · · , εn} 后，内积 (•, •) 完全由度量矩阵 A 决定。

度量矩阵一定是正定的：

• 由于内积的对称性，aij = (εi, εj) = (εj , εi) = aji，这说明 A 是对称矩阵；

• 由于内积的正定性，对于 X ̸= 0 ∈ Rn，令 α = (ε1, · · · , εn)X ̸= 0 ∈ V，则有 XTAX = (α, α) > 0，这说

明 A 是正定矩阵。
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反过来，任意一个正定矩阵 A可以决定 V 上的一个内积 (•, •)：取 V 的一组基 {ε1, · · · , εn}，定义 (εi, εj) = aij，

通过线性组合将这一定义拓展到 V 上。不难验证 (•, •) 是 V 上的一个内积，并且 A 是 {ε1, · · · , εn} 关于 (•, •)

的度量矩阵。

上述两条总结起来就是下面的定理。

定理 29.3 (内积和正定矩阵一一对应) 设 V 是 n 维欧氏空间，取定 V 的一组基 {ε1, · · · , εn}，则 V 上的内积

(•, •) 和 n 阶正定矩阵 A 形成一一对应。

定理 29.4 (内积在不同基下度量矩阵的关系) 设 (V, (•, •))是 n维欧氏空间，S = {α1, · · · , αn}, T = {β1, · · · , βn}

是 V 的两组基，P 是从 S 到 T 的过渡矩阵。若 (•, •) 在 S 和 T 下的度量矩阵分别为 A 和 B，则我们有

B = P TAP。

注记. 可以这么理解：对于任意 α, β ∈ V，设 α = (α1, · · · , αn)X1 = (β1, · · · , βn)Y1, β = (α1, · · · , αn)X2 =

(β1, · · · , βn)Y2，那么有

(α, β) = Y T
1 BY2

= XT
1 AX2 = Y T

1 P TAPY2

最后一步使用了坐标的变换。

上述相合关系启发我们选取 V 的一组更合适的基，使得度量矩阵 A 更加简单。

定义.（正交向量组，标准正交基）设 V 是 n 维欧氏空间，

(1) V 中正一组两两交的非零向量称为一个正交向量组；

(2) V 中有两两正交并且长度为 1 的向量组构成的基称为一个标准正交基。

注记. 不难证明，正交向量组一定是线性无关向量组，因此它至多含有 n 个向量。

定理 29.5 (Gram-Schmidt 正交化) 设 V 是 n 维欧氏空间，{α1, · · · , αm} 是 V 中一个线性无关组，则存在向

量组 {β1, · · · , βm}，满足以下性质

(1) {β1, · · · , βn} 是标准正交向量组；

(2) βi ∈ L{α1, · · · , αi}, 1 ⩽ i ⩽ m。

注记. Gram-Schimidt 正交化的过程如下：

(1) 令 γ1 = α1；

(2) 如果已经得到 γ1, · · · , γi，则令

γi+1 = αi+1 −
(αi+1, γ1)

(γ1, γ1)
γ1 − · · · − (αi+1, γi)

(γi, γi)
γi

(3) 继续以上过程，得到 {γ1, · · · , γm}，然后令 βi =
1

|γi|
γi，得到 {β1, · · · , βm}。
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注记. 性质 (2) 说明，存在上三角形矩阵P ∈ Mm(R) 使得 (β1, · · · , βm) = (α1, · · · , αm)P，从保持线性无关可以

看出 P 是 m 阶可逆矩阵。

例 173 在 R4 中，用 Gram-Schmidt 方法将下列向量组正交化：

v1 = (1, 1, 1, 1)T , v2 = (2, 2, 2,−2)T , v3 =

(
1,

1

2
,
1

2
, 0

)T

例 174 设 V 是一个 3 维欧氏空间，α1, α2, α3 是 V 的一组基。已知 α1, α2, α3 的度量矩阵为

 1 0 0

0 8 −2

0 −2 2

。
用 Schmidt 正交化给出 V 的一组标准正交基：η1 = , η2 = , η3 = 。

例 175 设 A 是 n 阶正定矩阵，证明：存在可逆上三角矩阵 C ∈ Mn(R)，使得 A = CTC。

例 176 设 V 是 n 维欧氏空间，φ 是 V 上的可逆线性变换，证明：φ 保持向量的夹角不变当且仅当 φ 保持向量的

正交关系（即如果 α ⊥ β，那么 φ(α) ⊥ φ(β)）。

30 正交矩阵与正交变换

定义.（正交矩阵与正交变换）

(1) 设 A ∈ Mn(R)，如果 A 满足 AAT = ATA = I，则称 A 为正交矩阵；

(2) 设 V 是欧氏空间，σ ∈ L(V )，如果对于任意 α, β ∈ V，都有 (σ(α), σ(β)) = (α, β)，则称 σ 为正交变换。

例 177 设 α 是一个非零的实数列向量，A = I − 2ααT。若 A 是正交矩阵，证明：α 是标准内积下的单位向量。

定理 30.1 (正交矩阵的初步性质) 设 A,B 是 n 阶正交矩阵

(1) A 的行（列）向量组构成 Rn 的一个标准正交基；

(2) A−1 = AT；

(3) |A| = ±1；

(4) A−1, A∗, AT , Ak, k ∈ N∗ 都是正交矩阵；

(5) AB 是正交矩阵。

例 178 若矩阵


1√
3

1√
3

1√
3

1√
6

− 2√
6

1√
6

− 1√
2

a b

 为正交矩阵，则 a = ，b =

例 179 设 A 是 n 阶正交矩阵，X0, Y0 是实 n 维列向量。已知在 Rn 的标准内积下，X0 与 AY0 的长度分别是 6

与 3。
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(1) 求 A−1X0 + Y0 的长度的最大值与最小值；

(2) 若 |X0 −AY0| = 3
√
3，求 AX0 与 A2Y0 的夹角。

定义.（正交补）设 V 是欧氏空间，W 是 V 的子空间，令 W⊥ = {β ∈ V | ∀α ∈ W, (α, β) = 0}，这称为 W 在

V 中的正交补。

定理 30.2 (不变子空间的正交补) 设 V 是欧氏空间，σ ∈ L(V ) 是正交变换。如果 W 是 σ 的不变子空间，那么

W⊥ 也是 σ 的不变子空间。

定理 30.3 (正交变换的等价条件) 设 V 是 n 维欧氏空间，σ ∈ L(V )，则 σ 是正交变换当且仅当

(1) 保持长度：对于任意 α ∈ V，都有 |σ(α)| = |α|；

(2) 将标准正交基变为标准正交基；

(3) 在任意一组标准正交基下的矩阵是正交矩阵。

注记. (3) 说明正交变换具有正交矩阵的各条性质，它可以这么理解：设 S = {α1, · · · , αn} 是 V 的一组标准正

交基，对于任意 α, β ∈ V，设 α = (α1, · · · , αn)X,β = (α1, · · · , αn)Y，那么有

(α, β) = XT IY = XTY

(σ(α), σ(β)) = (AX)T I(AY ) = XTATAY

例 180 已知 (I): {ε1, · · · , εn} 和 (II): {η1, · · · , ηn} 为 n 维欧氏空间的两组基，且满足

(η1, · · · , ηn) = (ε1, · · · , εn)A

则下列说法中错误的是 。

(A) 若 (I)(II) 都是标准正交基，则 A 是正交矩阵；

(B) 若 (I) 是标准正交基，A 是正交矩阵，则 (II) 是标准正交基；

(C) 若 (II) 是标准正交基，A 是正交矩阵，则 (I) 是标准正交基；

(D) 若 A 是正交矩阵，则 (I)(II) 都是标准正交基

例 181 设 V 是有限维欧氏空间，σ 是 V 上的线性变换。

(1) 若 σ 是 V 上的正交变换，证明：σ 在 V 的任意一组标准正交基下的矩阵 A 为正交矩阵；

(2) 若 σ 在 V 的某一组标准正交基下的矩阵 A 为正交矩阵，证明：σ 是 V 上的正交变换。

例 182 设 V 是实数域上的有限维线性空间，σ 是 V 上的线性变换且满足 ∀v ∈ V, σ2(v) + v = 0。

(1) 证明：σ 没有实特征值；

(2) 进一步假设 V 是欧氏空间且 σ 是一个正交变换，证明：对于任意 α ∈ V，都有 α ⊥ σ(α)。
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正交相似具有很好的性质，非常幸运的是，正交矩阵在正交相似之下可以化为更加简单的形式。

定理 30.4 (正交矩阵的特征值和正交相似标准形) 设 A 是 n 阶正交矩阵，

(1) A 的特征值模长都为 1，实特征值只可能为 ±1，复特征值为共轭成对出现的单位复数；

(2) 设 A的全部特征值为 1（出现 s次），−1（出现 t次）和 cos θi± i sin θi, 1 ⩽ i ⩽ k（这里应有 s+ t+2k = n），

则 A 正交相似于矩阵



Is

−It

A1

. . .

Ak


，其中 Ai =

(
cos θi − sin θi

sin θi cos θi

)
, 1 ⩽ i ⩽ k；

(3) 作为 (2) 的推论，如果 n 是奇数，那么 A 一定有实特征值。

例 183 设 A 是正交矩阵，则下列关于 A 的特征值的说法，错误的是 。

(A) 如果 |A| = 1，则 1 一定是 A 的特征值；

(B) 如果 |A| = −1，则 −1 一定是 A 的特征值；

(C) A 有可能没有实特征值；

(D) A 的复特征值的模长等于 1

例 184 设 A,B 是 n 阶正交矩阵，且 |AB| = −1，那么 |A+B| = 。

例 185 求正交矩阵 A =


2
3

2
3

1
3

1
3

− 2
3

2
3

− 2
3

1
3

2
3

 的正交相似标准形。
例 186 欧氏空间 V 的一个保持内积不变的线性同构变换称为 V 的一个同构变换。请问欧氏空间（含无穷维）的

同构变换和正交变换是同一个概念吗？【提示：关键在于是否同构】

31 实对称矩阵的正交相似对角化，对称变换

定义.（对称变换）设 V 是欧氏空间，σ ∈ L(V )，如果对于任意 α, β ∈ V，都有 (σ(α), β) = (α, σ(β))，则称 σ

为 V 上的对称变换。

例 187 设 σ 是欧氏空间 V 上的对称变换，则对任意 α, β ∈ V，下面论断正确的是 。

(A) (σ(α), σ(β)) = (α, β)；

(B) (α, σ(β)) = (σ(β), σ(α))；

(C) (α, β) = (σ(β), α)；

(D) (α, σ2(β)) = (σ(β), σ(α))

定理 31.1 (对称变换和实对称矩阵的关系) 设 V 是欧氏空间，σ ∈ L(V )，则 σ 是对称变换当且仅当 σ 在任意

一组标准正交基下的矩阵是实对称矩阵。

例 188 设 A 是实对称矩阵，证明 A2 = 0 的充分必要条件是 A = 0。
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例 189 设 σ 是 n 维欧式空间上的对称变换，若 σ2 = 0，证明 σ = 0。

定理 31.2 (特征子空间彼此正交) 设 V 是欧氏空间，σ ∈ L(V ) 是对称变换，如果 λ, µ 是 σ 的两个不同特征值，

则 Vλ ⊥ Vµ。

定理 31.3 (不变子空间的正交补) 设 V 是欧氏空间，σ ∈ L(V ) 是对称变换。如果 W 是 σ 的不变子空间，那么

W⊥ 也是 σ 的不变子空间。

现在我们来到本学期最深刻且最重要的定理。

定理 31.4 (实对称矩阵的特征值和正交相似标准形) 设 A 设 n 阶实对称矩阵，

(1) A 的特征值都为实数；

(2) 设 A 的全部特征值为 λ1, · · · , λn，则 A 正交相似于矩阵


λ1

. . .

λn

；
(3) 作为 (2) 的推论，实二次型 f(X) = XTAX 可以通过可逆线性变换化为 f(Y ) = λ1y

2
1 + · · ·+ λny

2
n，这称

为 f 的主轴形式。

例 190 设 V 欧氏空间，σ ∈ L(V )，称 σ 为反对称的，如果对任意 α, β ∈ V，都有 (σ(α), β) = −(α, σ(β))。证明

(1) σ 是反对称的当且仅当 σ 在一组标准正交基下的矩阵为反对称矩阵；

(2) 如果 W 是反对称线性变换 σ 的不变子空间，那么它的正交补空间 W⊥ 也是。

现在我们来看实对称矩阵正交相似对角化定理的若干应用。

计算正交相似标准形

例 191 已知矩阵 A =

 2 2 −2

2 5 −4

−2 −4 5

，求正交矩阵 P 使得 P TAP 为对角矩阵。

例 192 设实二次型 f(x1, x2, x3) = x2
1 − 2x2

2 − 2x2
3 − 4x1x2 + 4x1x3 + 8x2x3。

(1) 写出二次型 f(x1, x2, x3) 的矩阵；

(2) 用正交的线性替换化二次型 f(x1, x2, x3) 为标准形。

研究矩阵的性质

例 193 设 n 阶实对称方阵 A 只有一个特征值，则其特征子空间的维数是 。

例 194 设 A 是 4 阶实对称矩阵，(A2 −A)(A2 + I) = 0。若 A 的秩为 3，则 A 相似于 。

(A)


1

i

−i

0

； (B)


1

i 1

−i

0

；
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(C)


1 1

1

1

0

； (D)


1

1

1

0



例 195（判断）两个 n 阶实对称矩阵正交相似的充要条件是它们相似。

例 196 设 A 是 n 阶实对称矩阵，则 A 是正定矩阵当且仅当存在 n 阶正定矩阵 B 使得 A = B2。

32 特征值专题

同时相合对角化技巧

例 197 设 A 是 n 阶实对称正定矩阵，B 是 n 阶实对称矩阵，证明：

(1) 存在实可逆矩阵 P 使得 P TAP = I, P TBP 为对角形；

(2) 若矩阵 AB 的特征值都是正实数，则 B 是正定矩阵。

例 198 设 A,B 是 n 阶正定矩阵，证明：如果 A−B 是正定矩阵，则 B−1 −A−1 也是正定矩阵。

其他有关特征值的问题

例 199 设 A ∈ M4(R) 既是正交方阵又是正定方阵，那么 |5A− 3I| = 。

例 200 设 Q 是 n 阶正交矩阵，A = diag{a1, · · · , an}，m = min{|ai|},M = max{|ai|}。证明：矩阵 QA 的任意特

征值 λ 都满足 m ⩽ |λ| ⩽ M。

例 201 设 A,B 是 n 阶半正定矩阵

(1) 如果 trA = 0，证明 A = O；

(2) 如果 tr(AB) = 0，证明 AB = O。

例 202 设 A,B 是 n 阶半正定矩阵，证明：AB 的所有特征值都是非负实数。进一步地，如果 A,B 都是 n 阶正定

矩阵，证明：AB 的所有特征值都是正实数。

例 203 设 A 是 n 阶实对称矩阵，λ1 ⩽ · · · ⩽ λn 是 A 的从小到大的全体特征值。证明

λn = max
0 ̸=X∈Rn

XTAX

XTX
,λ1 = min

0 ̸=X∈Rn

XTAX

XTX

例 204 设 A 是实矩阵，λ = a+ bi, b ̸= 0 为 A 的一个虚特征值，X = X1 +X2i 为 λ 的复特征向量，X1, X2 分别

为其实部和虚部。证明 X1, X2 在复数域上线性无关。
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