Some frequently used constructions (functors) and tools in AT

spaces

§ concerning groups
Moore space M(G, n)
    • definition M(G, n):=the CW complex with $H_i(-)=\left.\begin{cases} 0&,i\neq n\\ G&,i=n \end{cases}\right.$, we may also assume π1(−) = 0 if n > 0.
    • basic results
    • applications
EM space K(G, n)
    • definition K(G, n):=the CW complex with $\pi_i(-)=\left.\begin{cases} 0&,i\neq n\\ G&,i=n \end{cases}\right.$.
    • basic results
      • unique up to (weak) homotopy equivalence;
      • product: K(G, n) × K(H, n) ≃ K(G × H, n)
      • representation results: Let G be an Ab-grp, X a CW complex, then X, K(G, n)⟩ ↔︎ Hn(X; G), [f] ↦ f*α where α ∈ Hn(K; G)) = Hom(Hn(K), G) is given by the inverse of Hurewitz isomorphism G → Hn(K).
      • cohomology: $H^*(K(\mathbb{Z},n);\mathbb{Q})=\left.\begin{cases} \mathbb{Q}[x_n]&,n\text{ is even}\\ \mathbb{Q}[x_n]/(x_n^2)&,n\text{ is odd} \end{cases}\right.$, using SSS with loopspace fibration, see page 11 of AT-all.
    • applications
      • motivations of (complex) universal bundles: K(ℤ, 1) = S1, K(ℤ/2, 1) = ℝℙ, K(ℤ, 2) = ℂℙ.
      • (co)homology of groups: Hn(G) = Hn(K(G, n))
classifying space BG
    • definition
      • BG is the CW complex such that there is a principle G-bundle EG → BG, with EG weakly contractible
      • construction (Milnor): for a topo-grp G, there is a accenting chain via topological join: G ⊂ G⋆2 ⊂ ⋯ ⊂ Gn Let EG = ∪Gn, BG = EG/G.
    • basic results
      • uniqueness up to homotopy equivalence
      • bijection: $[B,BG]\leftrightarrow Bun_{G}(B)=\left.\begin{cases}\text{principal } G-\\\text{bundles over B}\end{cases}\right\} /\cong$
    • applications
Postnikov Towers
§ (direct) constructions
connected sum ⋅#⋅
topological join ⋅ ⋆ ⋅
    • definition M ⋆ N = M × [0, 1] × N/∼, where (x, 0, y1) ∼ (x, 0, y2), (x1, 1, y) ∼ (x2, 1, y)

    • basic results

      • if M is m-connented, N is n-connected, then M ⋆ N is (m + n + 2)-connected.
      • S0 ⋆ S0 = S1, Sm ⋆ Sn = Sm + n + 1.
      • Mn is always (n − 2)-connected.
    • applications

      • Milnor’s construction of classifying space: EG = ∪Gn, BG = EG/G
suspension ΣX
wedge sum ⋅ ∨ ⋅
smash product ⋅ ∧ ⋅
path space PX
loop space ΩX
Thom space TE
Configuration space ConfnX
Čech nerve
§ concerning mappings
mapping cylinder
mapping cone Cf
mapping torus
lens space S/ℤ
Hopf torus

tools

  • fiber bundle
  • Gysin sequence
  • Leray-Hirsch
  • Thom class
  • Steenrod square
math
author:quiddite
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 许可协议。著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Nevermore.